Skip to main content

Advertisement

Log in

Evidence of CD90+CXCR4+ cells as circulating tumor stem cells in hepatocellular carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Primary hepatocellular carcinoma (HCC) often invades into vessels and has a distal metastasis at an early stage, resulting in poor prognosis and therapeutic outcome. The metastasis has been attributable to the dissemination of tumor cells into circulation as circulating tumor cells (CTCs). Moreover, cancer stem cells (CSCs) within CTCs, which are termed as circulating tumor stem cells (CTSCs), are critical for formation of distal metastatic tumors. Although CD133 and CD90 have been used to characterize and isolate CTCs or CSCs in HCC, no good marker (cocktail) has been identified so far for CTSCs in HCC. Here, we show evidence that CD90+CXCR4+ HCC cells may be CTSCs in HCC. CD90+CXCR4+ HCC cells formed tumor spheres in culture and developed tumors after serial adoptive transplantations into NOD/SCID mice, while the CD90−CXCR4−, CD90-CXCR4+ or CD90+CXCR4− cells did not. Moreover, tumor cells were significantly more frequently detected in the circulation when CD90+CXCR4+ HCC cells were subcutaneously transplanted. Further, subcutaneous transplantation of CD90+CXCR4+ HCC cells, but not transplantation of CD90−CXCR4−, CD90−CXCR4+, or CD90+CXCR4− cells significantly developed distal metastatic tumors. Together, these data suggest that CD90+CXCR4+ HCC cells may be CTSCs and selective elimination of these cells may substantially improve the current HCC therapy by reducing cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chiba T, Kanai F, Iwama A, Yokosuka O. Circulating cancer stem cells: a novel prognostic predictor of hepatocellular carcinoma. Hepatobiliary Surg Nutr. 2013;2:4–6.

    PubMed  PubMed Central  Google Scholar 

  2. Sainz Jr B, Heeschen C. Standing out from the crowd: cancer stem cells in hepatocellular carcinoma. Cancer Cell. 2013;23:431–3.

    Article  CAS  PubMed  Google Scholar 

  3. Nagano H, Ishii H, Marubashi S, Haraguchi N, Eguchi H, Doki Y, et al. Novel therapeutic target for cancer stem cells in hepatocellular carcinoma. J Hepatobiliary Pancreat Sci. 2012;19:600–5.

    Article  PubMed  Google Scholar 

  4. Chiba T, Kamiya A, Yokosuka O, Iwama A. Cancer stem cells in hepatocellular carcinoma: recent progress and perspective. Cancer Lett. 2009;286:145–53.

    Article  CAS  PubMed  Google Scholar 

  5. Ge Z, Zhang B, Bu X, Wang Y, Xiang L, Tan J. Molecular mechanism of activating protein-4 regulated growth of hepatocellular carcinoma. Tumour Biol. 2014;35:12441–7.

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Su H, Han X, Xu K. Inhibition of fibroblast growth factor receptor signaling impairs metastasis of hepatocellular carcinoma. Tumour Biol. 2014;35:11005–11.

    Article  CAS  PubMed  Google Scholar 

  7. Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One. 2012;7:e33788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fusi A, Liu Z, Kummerlen V, Nonnemacher A, Jeske J, Keilholz U. Expression of chemokine receptors on circulating tumor cells in patients with solid tumors. J Transl Med. 2012;10:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li CX, Shao Y, Ng KT, Liu XB, Ling CC, Ma YY, et al. Fty720 suppresses liver tumor metastasis by reducing the population of circulating endothelial progenitor cells. PLoS One. 2012;7:e32380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Charles J, Di Domizio J, Salameire D, Bendriss-Vermare N, Aspord C, Muhammad R, et al. Characterization of circulating dendritic cells in melanoma: role of ccr6 in plasmacytoid dendritic cell recruitment to the tumor. J Invest Dermatol. 2010;130:1646–56.

    Article  CAS  PubMed  Google Scholar 

  11. Lee K, Qian DZ, Rey S, Wei H, Liu JO, Semenza GL. Anthracycline chemotherapy inhibits hif-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc Natl Acad Sci U S A. 2009;106:2353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Petersson M, Niemann C. Stem cell dynamics and heterogeneity: implications for epidermal regeneration and skin cancer. Curr Med Chem. 2012;19:5984–92.

    Article  CAS  PubMed  Google Scholar 

  13. Perez-Losada J, Balmain A. Stem-cell hierarchy in skin cancer. Nat Rev Cancer. 2003;3:434–43.

    Article  CAS  PubMed  Google Scholar 

  14. Singh SR. Stem cell niche in tissue homeostasis, aging and cancer. Curr Med Chem. 2012;19:5965–74.

    Article  CAS  PubMed  Google Scholar 

  15. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  16. Nagata T, Sakakura C, Komiyama S, Miyashita A, Nishio M, Murayama Y, et al. Expression of cancer stem cell markers cd133 and cd44 in locoregional recurrence of rectal cancer. Anticancer Res. 2011;31:495–500.

    CAS  PubMed  Google Scholar 

  17. Fang DD, Kim YJ, Lee CN, Aggarwal S, McKinnon K, Mesmer D, et al. Expansion of cd133(+) colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. Br J Cancer. 2010;102:1265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shi C, Tian R, Wang M, Wang X, Jiang J, Zhang Z, et al. Cd44+ cd133+ population exhibits cancer stem cell-like characteristics in human gallbladder carcinoma. Cancer Biol Ther. 2010;10:1182–90.

    Article  CAS  PubMed  Google Scholar 

  19. Ottaiano A. Finding markers for cancer stem cells in renal cell carcinoma: looking beyond cd133. Cell Cycle. 2010;9:4431.

    Article  CAS  PubMed  Google Scholar 

  20. Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ, et al. Aldehyde dehydrogenase discriminates the cd133 liver cancer stem cell populations. Mol Cancer Res. 2008;6:1146–53.

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Boe SO, Svendsen A, et al. Cd133 negative glioma cells form tumors in nude rats and give rise to cd133 positive cells. Int J Cancer. 2008;122:761–8.

    Article  CAS  PubMed  Google Scholar 

  22. Duester G. Families of retinoid dehydrogenases regulating vitamin a function: production of visual pigment and retinoic acid. Eur J Biochem. 2000;267:4315–24.

    Article  CAS  PubMed  Google Scholar 

  23. Magni M, Shammah S, Schiro R, Mellado W, Dalla-Favera R, Gianni AM. Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood. 1996;87:1097–103.

    CAS  PubMed  Google Scholar 

  24. Armstrong L, Stojkovic M, Dimmick I, Ahmad S, Stojkovic P, Hole N, et al. Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells. 2004;22:1142–51.

    Article  PubMed  Google Scholar 

  25. Hess DA, Craft TP, Wirthlin L, Hohm S, Zhou P, Eades WC, et al. Widespread nonhematopoietic tissue distribution by transplanted human progenitor cells with high aldehyde dehydrogenase activity. Stem Cells. 2008;26:611–20.

    Article  PubMed  Google Scholar 

  26. Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Creer MH, et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004;104:1648–55.

    Article  CAS  PubMed  Google Scholar 

  27. Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R, et al. Selection based on cd133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006;107:2162–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, et al. Aldehyde dehydrogenase in combination with cd133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 2011;71:3991–4001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma I, Allan AL. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev. 2011;7:292–306.

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Jiang X, Zeng Y, Zhou H, Yang J, Cao R. Proliferating pancreatic beta-cells upregulate aldh. Histochem Cell Biol. 2014;142:685–91.

  31. Zhang L, Wang L, Liu X, Zheng D, Liu S, Liu C. Aldh expression characterizes g1-phase proliferating beta cells during pregnancy. PLoS One. 2014;9:e96204.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology. 2008;47:919–28.

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Lingala S, Khoobyari S, Nolta J, Zern MA, Wu J. Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations. J Hepatol. 2011;55:838–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lingala S, Cui YY, Chen X, Ruebner BH, Qian XF, Zern MA, et al. Immunohistochemical staining of cancer stem cell markers in hepatocellular carcinoma. Exp Mol Pathol. 2010;89:27–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Piao LS, Hur W, Kim TK, Hong SW, Kim SW, Choi JE, et al. Cd133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett. 2012;315:129–37.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Luo N, Luo Y, Peng Z, Zhang T, Li S. Microrna-150 inhibits human cd133-positive liver cancer stem cells through negative regulation of the transcription factor c-myb. Int J Oncol. 2012;40:747–56.

    CAS  PubMed  Google Scholar 

  37. Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, et al. Cd13 is a therapeutic target in human liver cancer stem cells. J Clin Invest. 2010;120:3326–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, et al. Significance of cd90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13:153–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from National Natural Sciences Foundation of China, number: 81171432.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Wang or Rong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhang, W., Wang, J. et al. Evidence of CD90+CXCR4+ cells as circulating tumor stem cells in hepatocellular carcinoma. Tumor Biol. 36, 5353–5360 (2015). https://doi.org/10.1007/s13277-015-3196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3196-6

Keywords

Navigation