Skip to main content
Log in

Stathmin in pancreatic neuroendocrine neoplasms: a marker of proliferation and PI3K signaling

  • Research Article
  • Published:
Tumor Biology

Abstract

Chromosome 1p35-36, which encodes tumor suppressors and mitotic checkpoint control genes, is commonly altered in human malignancies. One gene at this locus, stathmin 1 (STMN1), is involved in cell cycle progression and metastasis. We hypothesized that increased STMN1 expression may play a role in pancreatic neuroendocrine neoplasm (pNEN) malignancy. We investigated stathmin copy number variation, mRNA, and protein expression using PCR-Taqman Copy Number Assays, Q-PCR, Western blot, and immunohistochemistry. A mechanistic role for stathmin in proliferation was assessed in the BON cell line under growth-restrictive conditions and siRNA silencing. Furthermore, its role in PI3K signaling pathway activation was evaluated using pharmacological inhibitors. mRNA (p = 0.0001) and protein (p < 0.05) were overexpressed in pNENs. Expression was associated with pNEN tumor extension (p < 0.05), size (p < 0.01), and Ki67 expression (p < 0.01). Serum depletion decreased Ki67 expression (p < 0.01) as well as Ser38 phosphorylation (p < 0.05) in BON cells. STMN1 knockdown (siRNA) decreased proliferation (p < 0.05), and PI3K inhibitors directly inhibited proliferation via stathmin inactivation (dephosphorylation p < 0.01). We identified that stathmin was overexpressed and associated with pathological parameters in pancreatic NENs. We postulate that STMN1 overexpression and phosphorylation result in a loss of cell cycle mitotic checkpoint control and may render tumors amenable to PI3K inhibitory therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9:61–72.

    Article  CAS  PubMed  Google Scholar 

  2. Schimmack S, Svejda B, Lawrence B, Kidd M, Modlin IM. The diversity and commonalities of gastroenteropancreatic neuroendocrine tumors. Langenbecks Arch Surg. 2011;396:273–98.

    Article  PubMed  Google Scholar 

  3. Canavese G, Azzoni C, Pizzi S, Corleto VD, Pasquali C, Davoli C, et al. p27: a potential main inhibitor of cell proliferation in digestive endocrine tumors but not a marker of benign behavior. Hum Pathol. 2001;32:1094–101.

    Article  CAS  PubMed  Google Scholar 

  4. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raef H, Zou M, Baitei EY, Al-Rijjal RA, Kaya N, Al-Hamed M, et al. A novel deletion of the MEN1 gene in a large family of multiple endocrine neoplasia type 1 (MEN1) with aggressive phenotype. Clin Endocrinol (Oxf). 2011;75:791–800.

    Article  CAS  Google Scholar 

  6. Hu W, Feng Z, Modica I, Klimstra DS, Song L, Allen PJ, et al. Gene amplifications in well-differentiated pancreatic neuroendocrine tumors inactivate the p53 pathway. Genes Cancer. 2010;1:360–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang LH, Contractor T, Clausen R, Klimstra DS, Du YC, Allen PJ, et al. Attenuation of the retinoblastoma pathway in pancreatic neuroendocrine tumors due to increased cdk4/cdk6. Clin Cancer Res. 2012;18:4612–20.

    Article  CAS  PubMed  Google Scholar 

  8. Zikusoka MN, Kidd M, Eick G, Latich I, Modlin IM. The molecular genetics of gastroenteropancreatic neuroendocrine tumors. Cancer. 2005;104:2292–309.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao J, Moch H, Scheidweiler AF, Baer A, Schaffer AA, Speel EJ, et al. Genomic imbalances in the progression of endocrine pancreatic tumors. Genes Chromosomes Cancer. 2001;32:364–72.

    Article  CAS  PubMed  Google Scholar 

  10. Beckers A, Abs R, Reyniers E, De Boulle K, Stevenaert A, Heller FR, et al. Variable regions of chromosome 11 loss in different pathological tissues of a patient with the multiple endocrine neoplasia type I syndrome. J Clin Endocrinol Metab. 1994;79:1498–502.

    CAS  PubMed  Google Scholar 

  11. Janoueix-Lerosey I, Novikov E, Monteiro M, Gruel N, Schleiermacher G, Loriod B, et al. Gene expression profiling of 1p35-36 genes in neuroblastoma. Oncogene. 2004;23:5912–22.

    Article  CAS  PubMed  Google Scholar 

  12. Ezaki T, Yanagisawa A, Ohta K, Aiso S, Watanabe M, Hibi T, et al. Deletion mapping on chromosome 1p in well-differentiated gastric cancer. Br J Cancer. 1996;73:424–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leister I, Weith A, Bruderlein S, Cziepluch C, Kangwanpong D, Schlag P, et al. Human colorectal cancer: high frequency of deletions at chromosome 1p35. Cancer Res. 1990;50:7232–5.

    CAS  PubMed  Google Scholar 

  14. Hahn SA, Seymour AB, Hoque AT, Schutte M, da Costa LT, Redston MS, et al. Allelotype of pancreatic adenocarcinoma using xenograft enrichment. Cancer Res. 1995;55:4670–5.

    CAS  PubMed  Google Scholar 

  15. Ebrahimi SA, Wang EH, Wu A, Schreck RR, Passaro Jr E, Sawicki MP. Deletion of chromosome 1 predicts prognosis in pancreatic endocrine tumors. Cancer Res. 1999;59:311–5.

    CAS  PubMed  Google Scholar 

  16. Stumpf E, Aalto Y, Hoog A, Kjellman M, Otonkoski T, Knuutila S, et al. Chromosomal alterations in human pancreatic endocrine tumors. Genes Chromosomes Cancer. 2000;29:83–7.

    Article  CAS  PubMed  Google Scholar 

  17. Rubin CI, Atweh GF. The role of stathmin in the regulation of the cell cycle. J Cell Biochem. 2004;93:242–50.

    Article  CAS  PubMed  Google Scholar 

  18. Sherbet G, Cajone F. Stathmin in cell proliferation and cancer progression. Cancer Genomics Proteomics. 2005;2:227–38.

    CAS  Google Scholar 

  19. Jourdain L, Curmi P, Sobel A, Pantaloni D, Carlier MF. Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry. 1997;36:10817–21.

    Article  CAS  PubMed  Google Scholar 

  20. Lin X, Tang M, Tao Y, Li L, Liu S, Guo L, et al. Epstein-Barr virus-encoded LMP1 triggers regulation of the ERK-mediated Op18/stathmin signaling pathway in association with cell cycle. Cancer Sci. 2012;103:993–9.

    Article  CAS  PubMed  Google Scholar 

  21. Tan HT, Wu W, Ng YZ, Zhang X, Yan B, Ong CW, et al. Proteomic analysis of colorectal cancer metastasis: stathmin-1 revealed as a player in cancer cell migration and prognostic marker. J Proteome Res. 2012;11:1433–45.

    Article  CAS  PubMed  Google Scholar 

  22. Jeon TY, Han ME, Lee YW, Lee YS, Kim GH, Song GA, et al. Overexpression of stathmin1 in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells. Br J Cancer. 2010;102:710–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singer S, Malz M, Herpel E, Warth A, Bissinger M, Keith M, et al. Coordinated expression of stathmin family members by far upstream sequence element-binding protein-1 increases motility in non-small cell lung cancer. Cancer Res. 2009;69:2234–43.

    Article  CAS  PubMed  Google Scholar 

  24. Hsieh SY, Huang SF, Yu MC, Yeh TS, Chen TC, Lin YJ, et al. Stathmin1 overexpression associated with polyploidy, tumor-cell invasion, early recurrence, and poor prognosis in human hepatoma. Mol Carcinog. 2010;49:476–87.

    CAS  PubMed  Google Scholar 

  25. Ghosh R, Gu G, Tillman E, Yuan J, Wang Y, Fazli L, et al. Increased expression and differential phosphorylation of stathmin may promote prostate cancer progression. Prostate. 2007;67:1038–52.

    Article  CAS  PubMed  Google Scholar 

  26. Baquero MT, Hanna JA, Neumeister V, Cheng H, Molinaro AM, Harris LN, et al. Stathmin expression and its relationship to microtubule-associated protein tau and outcome in breast cancer. Cancer. 2012.

  27. Wei SH, Lin F, Wang X, Gao P, Zhang HZ. Prognostic significance of stathmin expression in correlation with metastasis and clinicopathological characteristics in human ovarian carcinoma. Acta Histochem. 2008;110:59–65.

    Article  CAS  PubMed  Google Scholar 

  28. Xi W, Rui W, Fang L, Ke D, Ping G, Hui-Zhong Z. Expression of stathmin/op18 as a significant prognostic factor for cervical carcinoma patients. J Cancer Res Clin Oncol. 2009;135:837–46.

    Article  PubMed  Google Scholar 

  29. Trovik J, Wik E, Stefansson IM, Marcickiewicz J, Tingulstad S, Staff AC, et al. Stathmin overexpression identifies high-risk patients and lymph node metastasis in endometrial cancer. Clin Cancer Res. 2011;17:3368–77.

    Article  CAS  PubMed  Google Scholar 

  30. Hanash SM, Strahler JR, Kuick R, Chu EH, Nichols D. Identification of a polypeptide associated with the malignant phenotype in acute leukemia. J Biol Chem. 1988;263:12813–5.

    CAS  PubMed  Google Scholar 

  31. Kidd M, Eick G, Shapiro MD, Camp RL, Mane SM, Modlin IM. Microsatellite instability and gene mutations in transforming growth factor-beta type II receptor are absent in small bowel carcinoid tumors. Cancer. 2005;103:229–36.

    Article  CAS  PubMed  Google Scholar 

  32. Lopez JR, Claessen SM, Macville MV, Albrechts JC, Skogseid B, Speel EJ. Spectral karyotypic and comparative genomic analysis of the endocrine pancreatic tumor cell line BON-1. Neuroendocrinology. 2010;91:131–41.

    Article  CAS  PubMed  Google Scholar 

  33. Sirivatanauksorn V, Sirivatanauksorn Y, Gorman PA, Davidson JM, Sheer D, Moore PS, et al. Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping. Int J Cancer. 2001;91:350–8.

    Article  CAS  PubMed  Google Scholar 

  34. Schimmack S, Lawrence B, Svejda B, Alaimo D, Schmitz-Winnenthal H, Fischer L, et al. The clinical implications and biologic relevance of neurofilament expression in gastroenteropancreatic neuroendocrine neoplasms. Cancer. 2012;118:2763–75.

    Article  PubMed  Google Scholar 

  35. Svejda B, Kidd M, Kazberouk A, Lawrence B, Pfragner R, Modlin IM. Limitations in small intestinal neuroendocrine tumor therapy by mTOR kinase inhibition reflect growth factor-mediated PI3K feedback loop activation via ERK1/2 and AKT. Cancer. 2011;117:4141–54.

    Article  CAS  PubMed  Google Scholar 

  36. Kidd M, Nadler B, Mane S, Eick G, Malfertheiner M, Champaneria M, et al. GeneChip, geNorm, and gastrointestinal tumors: novel reference genes for real-time PCR. Physiol Genomics. 2007;30:363–70.

    Article  CAS  PubMed  Google Scholar 

  37. Tan HT, Wu W, Ng YZ, Zhang X, Yan B, Ong CW, et al. Proteomic analysis of colorectal cancer metastasis: stathmin-1 revealed as a player in cancer cell migration and prognostic marker. J Proteome Res. 2012;10:10.

    Google Scholar 

  38. Evers BM, Townsend Jr CM, Upp JR, Allen E, Hurlbut SC, Kim SW, et al. Establishment and characterization of a human carcinoid in nude mice and effect of various agents on tumor growth. Gastroenterology. 1991;101:303–11.

    Article  CAS  PubMed  Google Scholar 

  39. Modlin I, Moss SF, Gustafsson BI, Lawrence B, Schimmack S, Kidd M. The archaic distinction between functioning and non-functioning neuroendocrine neoplasms is no longer clinically relevant. Langenbecks Arch Surg. 2011.

  40. Andersen JN, Sathyanarayanan S, Di Bacco A, Chi A, Zhang T, Chen AH, et al. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors. Sci Transl Med. 2010;2:43ra55.

    PubMed  Google Scholar 

  41. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  42. Lubensky IA, Zhuang Z. Molecular genetic events in gastrointestinal and pancreatic neuroendocrine tumors. Endocr Pathol. 2007;18:156–62.

    Article  CAS  PubMed  Google Scholar 

  43. Mathew CG, Smith BA, Thorpe K, Wong Z, Royle NJ, Jeffreys AJ, et al. Deletion of genes on chromosome 1 in endocrine neoplasia. Nature. 1987;328:524–6.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang HZ, Wang Y, Gao P, Lin F, Liu L, Yu B, et al. Silencing stathmin gene expression by survivin promoter-driven siRNA vector to reverse malignant phenotype of tumor cells. Cancer Biol Ther. 2006;5:1457–61.

    Article  CAS  PubMed  Google Scholar 

  45. Belletti B, Nicoloso MS, Schiappacassi M, Berton S, Lovat F, Wolf K, et al. Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Mol Biol Cell. 2008;19:2003–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baldassarre G, Belletti B, Nicoloso MS, Schiappacassi M, Vecchione A, Spessotto P, et al. p27 (Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell. 2005;7:51–63.

    Article  CAS  PubMed  Google Scholar 

  47. Rowlands DC, Harrison RF, Jones NA, Williams A, Hubscher SG, Brown G. Stathmin is expressed by the proliferating hepatocytes during liver regeneration. Clin Mol Pathol. 1995;48:M88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sadow PM, Rumilla KM, Erickson LA, Lloyd RV. Stathmin expression in pheochromocytomas, paragangliomas, and in other endocrine tumors. Endocr Pathol. 2008;19:97–103.

    Article  CAS  PubMed  Google Scholar 

  49. Wik E, Birkeland E, Trovik J, Werner HM, Hoivik EA, Mjos S, et al. High phospho-stathmin (Serine38) expression identifies aggressive endometrial cancer and suggests an association with PI3Kinase inhibition. Clin Cancer Res. 2013;28:28.

    Google Scholar 

  50. Parker CG, Hunt J, Diener K, McGinley M, Soriano B, Keesler GA, et al. Identification of stathmin as a novel substrate for p38 delta. Biochem Biophys Res Commun. 1998;249:791–6.

    Article  CAS  PubMed  Google Scholar 

  51. Salvesen HB, Carter SL, Mannelqvist M, Dutt A, Getz G, Stefansson IM, et al. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci U S A. 2009;106:4834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M, et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci U S A. 2007;104:7564–9. Epub 2007 Apr 7523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brattsand G, Marklund U, Nylander K, Roos G, Gullberg M. Cell-cycle-regulated phosphorylation of oncoprotein 18 on Ser16, Ser25 and Ser38. Eur J Biochem. 1994;220:359–68.

    Article  CAS  PubMed  Google Scholar 

  54. Larsson N, Melander H, Marklund U, Osterman O, Gullberg M. G2/M transition requires multisite phosphorylation of oncoprotein 18 by two distinct protein kinase systems. J Biol Chem. 1995;270:14175–83.

    Article  CAS  PubMed  Google Scholar 

  55. Singer S, Ehemann V, Brauckhoff A, Keith M, Vreden S, Schirmacher P, et al. Protumorigenic overexpression of stathmin/Op18 by gain-of-function mutation in p53 in human hepatocarcinogenesis. Hepatology. 2007;46:759–68.

    Article  CAS  PubMed  Google Scholar 

  56. Zheng P, Liu YX, Chen L, Liu XH, Xiao ZQ, Zhao L, et al. Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. J Proteome Res. 2010;9:4897–905.

    Article  CAS  PubMed  Google Scholar 

  57. Liang XJ, Choi Y, Sackett DL, Park JK. Nitrosoureas inhibit the stathmin-mediated migration and invasion of malignant glioma cells. Cancer Res. 2008;68:5267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol. 2003;5:599–609.

    Article  CAS  PubMed  Google Scholar 

  59. Nogales E, Wang HW. Structural intermediates in microtubule assembly and disassembly: how and why? Curr Opin Cell Biol. 2006;18:179–84.

    Article  CAS  PubMed  Google Scholar 

  60. Yoshie M, Miyajima E, Kyo S, Tamura K. Stathmin, a microtubule regulatory protein, is associated with hypoxia-inducible factor-1alpha levels in human endometrial and endothelial cells. Endocrinology. 2009;150:2413–8.

    Article  CAS  PubMed  Google Scholar 

  61. Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M, et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci U S A. 2007;104:7564–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Drury SC, Detre S, Leary A, Salter J, Reis-Filho J, Barbashina V, et al. Changes in breast cancer biomarkers in the IGF1R/PI3K pathway in recurrent breast cancer after tamoxifen treatment. Endocr Relat Cancer. 2011;18:565–77.

    Article  CAS  PubMed  Google Scholar 

  63. Wang X, Ren JH, Lin F, Wei JX, Long M, Yan L, et al. Stathmin is involved in arsenic trioxide-induced apoptosis in human cervical cancer cell lines via PI3K linked signal pathway. Cancer Biol Ther. 2010;10:632–43.

    Article  CAS  PubMed  Google Scholar 

  64. Karst AM, Levanon K, Duraisamy S, Liu JF, Hirsch MS, Hecht JL, et al. Stathmin 1, a marker of PI3K pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas. Gynecol Oncol. 2011;123:5–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding support for SS was provided by the Deutsche Forschungsgemeinschaft SCHI 1177/1-1. BL was partially supported by the Murray Jackson Clinical Fellowship from the Genesis Oncology Trust, Auckland, New Zealand.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark Kidd or Laura H Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schimmack, S., Taylor, A., Lawrence, B. et al. Stathmin in pancreatic neuroendocrine neoplasms: a marker of proliferation and PI3K signaling. Tumor Biol. 36, 399–408 (2015). https://doi.org/10.1007/s13277-014-2629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2629-y

Keywords

Navigation