Skip to main content

Advertisement

Log in

Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2

  • Research Article
  • Published:
Tumor Biology

Abstract

Myricetin, a common dietary flavonoid, is widely distributed in fruits and vegetables and is used as a health food supplement based on its anti-tumor properties. However, the effect and mechanisms of myricetin in esophageal carcinoma are not fully understood. Here, we demonstrated the effect of myricetin on the proliferation, apoptosis, and invasion of the esophageal carcinoma cell lines EC9706 and KYSE30 and explored the underlying mechanism and target protein(s) of myricetin. CCK-8 assay, transwell invasion assay, wound-healing assay, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, invasion, and apoptosis. Nude mouse tumor xenograft model was built to understand the interaction between myricetin and NTD RSK2. Pull-down assay was used to verify molecular mechanism. Myricetin inhibited proliferation and invasion and induced apoptosis of EC9706 and KYSE30 cells. Moreover, myricetin was shown to bind RSK2 through the NH2-terminal kinase domain. Finally, myricetin inhibited EC9706 and KYSE30 cell proliferation through Mad1 and induced cell apoptosis via Bad. Myricetin inhibits the proliferation and invasion and induces apoptosis in EC9706 and KYSE30 cells via RSK2. Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2. Our results provide novel insight into myricetin as a potential agent for the prevention and treatment of esophageal carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases withdiverse biological functions. Microbiol Mol Biol Rev. 2004;68:320–44.

    Article  CAS  Google Scholar 

  2. Jones SW, Erikson E, Blenis J, Maller JL, Erikson RL. A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proc Natl Acad Sci U S A. 1988;85:3377–81.

    Article  CAS  Google Scholar 

  3. Frodin M, Jensen CJ, Merienne K, Gammeltoft S A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates (2000) PDK1. EMBO J 19:2924–2934.

  4. Artamonov M, Momotani K, Utepbergenov D, Franke A, Khromov A, Derewenda ZS. The p90 ribosomal S6 kinase (RSK) is a mediator of smooth muscle contractility. PLoS One. 2013;8(3):e58703.

    Article  CAS  Google Scholar 

  5. Nebreda AR, Gavin AC. Perspectives: signal transduction. Cell survival demands some RSK Science. 1999;286:1309–10.

    CAS  PubMed  Google Scholar 

  6. Redman EK, Brookes PS, Karcz MK. Role of p90 (RSK) in regulating the Crabtree effect: implications for cancer. Biochem. Soc Trans. 2013;41(1):124–6.

    CAS  Google Scholar 

  7. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006;24:21–44.

    Article  CAS  Google Scholar 

  8. Rubinfeld H, Seger R. The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol. 2005;31:151–74.

    Article  CAS  Google Scholar 

  9. Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs. 2009;18(12):1893–905.

    Article  CAS  Google Scholar 

  10. Meyuhas O. Physiological roles of ribosomal protein S6: one of its kinds. Int Rev Cell Mol Biol. 2008;268:1–37.

    Article  CAS  Google Scholar 

  11. Cho YY, Yao K, Kim HG, Kang BS, Zheng D, Bode AM. Ribosomal S6 kinase 2 is a key regulator in tumor promoter induced cell transformation. Cancer Res. 2007;Cancer Res 67:8104–12.

    Article  Google Scholar 

  12. Weng CJ, Yen GC. Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev. 2012;31(1–2):323–51.

    Article  CAS  Google Scholar 

  13. López-Lázaro M, Willmore E, Austin CA. The dietary flavonoids myricetin and fisetin act as dual inhibitors of DNA topoisomerases I and II in cells. Mutat Res. 2010;696(1):41–7.

    Article  Google Scholar 

  14. Nirmala P, Ramanathan M. Effect of myricetin on 1, 2 dimethylhydrazine induced rat colon carcinogenesis. J Exp Ther Oncol. 2011;9(2):101–8.

    CAS  PubMed  Google Scholar 

  15. Sun F, Zheng XY, Ye J, Wu TT, Jl W, Chen W. Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer. 2012;64(4):599–606.

    Article  CAS  Google Scholar 

  16. Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, et al. Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer Res. 2008;68(14):6021–9.

    Article  CAS  Google Scholar 

  17. Rodgers EH, Grant MH. The effect of the flavonoids, quercetin, myricetin and epicatechin on the growth and enzyme activities of MCF7 human breast cancer cells. Chem Biol Interact. 1998;116(3):213–28.

    Article  CAS  Google Scholar 

  18. Kuntz S, Wenzel U, Daniel H. Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. Eur J Nutr. 1999;38(3):133–42.

    Article  CAS  Google Scholar 

  19. Maggiolini M, Recchia AG, Bonofiglio D, Catalano S, Vivacqua A, Carpino A. The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor alpha in human breast cancer cells. J Mol Endocrinol. 2005.

  20. Anjum R, Blenis J. The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 2008;9(10):747–58.

    Article  CAS  Google Scholar 

  21. RJ S, Bates PA, Waelkens E, Dallman M, Lamb J. A siRNA screen identifies RSK1 as a key modulator of lung cancer metastasis. Oncogene. 2011;30:3513–21.

    Article  Google Scholar 

  22. Gawecka JE, Young-Robbins SS, Sulzmaier FJ, Caliva MJ, Heikkilä MM, Matter ML. RSK2 protein suppresses integrin activation and fibronectin matrix assembly and promotes cell migration. J Biol Chem. 2012;287(52):43424–37.

    Article  CAS  Google Scholar 

  23. van Jaarsveld MT, Blijdorp IC, Boersma AW, Pothof J, Mathijssen RH, Verweij J. The kinase RSK2 modulates the sensitivity of ovarian cancer cells to cisplatin. Eur J Cancer. 2013;49(2):345–51.

    Article  Google Scholar 

  24. Eisinger-Mathason TS, Andrade J, Lannigan DA. RSK in tumorigenesis: connections to steroid signaling. Steroids. 2010;75(3):191–202.

  25. Hilinski MK, Mrozowski RM, Clark DE, Lannigan DA. Analogs of the RSK inhibitor SL0101: optimization of in vitro biological stability. Bioorg Med Chem Lett. 2012;22(9):3244–7.

    Article  CAS  Google Scholar 

  26. Lu W, Liu X, Cao X, Xue M, Liu K, Zhao Z. hybrid approach for 3D molecular similarity calculation. 2. Prospective case study in the discovery of diverse p90 ribosomal S6 protein kinase 2 inhibitors to suppress cell migration. J Med Chem. 2011;54:3564–74.

    Article  CAS  Google Scholar 

  27. Peng C, Zhu F, Wen W, Yao K, Li S, Zykova T. Tumor necrosis factor receptor-associated factor family protein 2 is a key mediator of the epidermal growth factor-induced ribosomal S6 kinase 2/cAMP-responsive element-binding protein/Fos protein signaling pathway. J Biol Chem. 2012;287(31):25881–92.

    Article  CAS  Google Scholar 

  28. Malakhova M, Kurinov I, Liu K, Zheng D, D'Angelo I, Shim JH. Structural diversity of the active N-terminal kinase domain of p90 ribosomal S6 kinase 2. PLoS One. 2009;4(11):e8044.

    Article  Google Scholar 

  29. Shimura Y, Kuroda J, Ri M, Nagoshi H, Yamamoto-Sugitani M, Kobayashi T. RSK2(Ser227) at N-terminal kinase domain is a potential therapeutic target for multiple myeloma. Mol Cancer Ther. 2012;11(12):2600–9.

    Article  CAS  Google Scholar 

  30. Utepbergenov D, Derewenda U, Olekhnovich N, Szukalska G, Banerjee B, et al. Insights into the inhibition of the p90 ribosomal S6 kinase (RSK) by the flavonol glycoside SL010 from the 1.5 Å crystal structure of the N-terminal domain of RSK2 with bound inhibitor. Biochemistry. 2012;51(33):6499–510.

    Article  CAS  Google Scholar 

  31. Rottmann S, Lüscher B. The Mad side of the Max network: antagonizing the function of Myc and more. Curr Top Microbiol Immunol. 2006;302:63–122.

    CAS  PubMed  Google Scholar 

  32. Vigneron S, Brioudes E, Burgess A, Labbé JC, Lorca T, Castro A. RSK2 is a kinetochore-associated protein that participates in the spindle assembly checkpoint. Oncogene. 2010;29(24):3566–74.

    Article  CAS  Google Scholar 

  33. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science. 1999;286(5443):1358–62.

    Article  CAS  Google Scholar 

  34. Virdee KS, Parone PA, Tolkovsky AM. Phosphorylation of the pro-apoptotic protein BAD on serine 155, a novel site, contribute to cell survival. Curr Biol. 2000;10:1151–4.

    Article  CAS  Google Scholar 

  35. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science. 1999;286(5443):1358–62.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors have declared that no competing interest exists.

Acknowledgments

This study was supported by the Education Department of Henan province science and technology research projects (12A310015, 13A310671). Thank Prof. Xuejun Xu for the help in the myricetin and RSK2 interaction assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, W., Wang, T., Wang, Y. et al. Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2. Tumor Biol. 35, 12583–12592 (2014). https://doi.org/10.1007/s13277-014-2579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2579-4

Keywords

Navigation