Skip to main content

Advertisement

Log in

Downregulation of CPE regulates cell proliferation and chemosensitivity in pancreatic cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Pancreatic cancer (PC) is one of the most common cancers worldwide and a leading cause of cancer-related death. Discovering novel targets is a key for its therapy. Carboxypeptidase E (CPE), a subtype of the pro-protein convertases, has been shown to be upregulated in many types of cancer, yet its function in PC remains elusive. The expressions of CPE in PC cell lines and cancer patients were investigated by Western blot and qRT-PCR. In PC cell line BX-pc-3, CPE was downregulated and its effect on cancer cell proliferation, migration, cisplatin chemosensitivity, and in vivo tumor growth was analyzed by Western blot, proliferation assay, invasion assay, and in vivo transplantation, respectively. The expression of nuclear factor-kappaB (NF-κB), a possible downstream target of CPE was examined by Western blot upon CPE regulation in PC cells, and the effects of inhibiting NF-κB on PC cell invasion and proliferation were examined. CPE was significantly upregulated in PC cell lines and tumor tissues. Proliferation and invasion assays indicated that downregulation of CPE inhibited cancer cell growth and migration and increased chemosensitivity to cisplatin. Inoculation of small interfering RNA (siRNA) transfected BX-pc-3 cells into null mice demonstrated that downregulation of CPE prevented tumor growth in vivo. NF-κB was directly regulated by CPE in pancreatic cancer, and siRNA-mediated inhibition of NF-κB exerted similar anti-tumor effect as downregulating CPE. Taken together, our results demonstrate that CPE plays an important role in pancreatic cancer. Inhibition of CPE may serve as a potential target for PC therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  Google Scholar 

  2. Chen W, Zheng R, Zhang S, Zhao P, Li G, Wu L, et al. Report of incidence and mortality in china cancer registries, 2009. Chin J Cancer Res. 2013;25:10–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hirata K, Egawa S, Kimura Y, Nobuoka T, Oshima H, Katsuramaki T, et al. Current status of surgery for pancreatic cancer. Dig Surg. 2007;24:137–47.

    Article  Google Scholar 

  4. Gillen S, Schuster T, Meyer Zum Buschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7:e1000267.

    Article  Google Scholar 

  5. Reznik R, Hendifar AE, Tuli R. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma. Front Physiol. 2014;5:87.

    Article  Google Scholar 

  6. Satoh K. The molecular mechanism in tumorigenesis and development of pancreatic cancer. Nihon Shokakibyo Gakkai zasshi Jpn J Gastroenterol. 2013;110:2042–50.

    Google Scholar 

  7. Fricker LD. Carboxypeptidase E. Annu Rev Physiol. 1988;50:309–21.

    Article  CAS  Google Scholar 

  8. Pla V, Paco S, Ghezali G, Ciria V, Pozas E, Ferrer I, et al. Secretory sorting receptors carboxypeptidase e and secretogranin III in amyloid beta-associated neural degeneration in Alzheimer's disease. Brain Pathol. 2013;23:274–84.

    Article  CAS  Google Scholar 

  9. McGirr R, Guizzetti L, Dhanvantari S. The sorting of proglucagon to secretory granules is mediated by carboxypeptidase E and intrinsic sorting signals. J Endocrinol. 2013;217:229–40.

    Article  CAS  Google Scholar 

  10. Steiner DF. The proprotein convertases. Curr Opin Chem Biol. 1998;2:31–9.

    Article  CAS  Google Scholar 

  11. Naggert JK, Fricker LD, Varlamov O, Nishina PM, Rouille Y, Steiner DF, et al. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase e mutation which reduces enzyme activity. Nat Genet. 1995;10:135–42.

    Article  CAS  Google Scholar 

  12. Cawley NX, Yanik T, Woronowicz A, Chang W, Marini JC, Loh YP. Obese carboxypeptidase E knockout mice exhibit multiple defects in peptide hormone processing contributing to low bone mineral density. Am J Physiol Endocrinol Metab. 2010;299:E189–97.

    Article  CAS  Google Scholar 

  13. Yang L, Zhou Z, Du T, Tan S, Zhnag Y, Jin P. Detection of carboxypeptidase h specific t cells in peripheral blood of latent autoimmune diabetic patients with carboxypeptidase antibody positivity by ELISPOT assay. Zhong nan da xue xue bao Yi xue ban J Cent South Univ Med Sci. 2009;34:1011–6.

    CAS  Google Scholar 

  14. Murthy SR, Dupart E, Al-Sweel N, Chen A, Cawley NX, Loh YP. Carboxypeptidase e promotes cancer cell survival, but inhibits migration and invasion. Cancer Lett. 2013;341:204–13.

    Article  CAS  Google Scholar 

  15. Cawley NX, Wetsel WC, Murthy SR, Park JJ, Pacak K, Loh YP. New roles of carboxypeptidase E in endocrine and neural function and cancer. Endocr Rev. 2012;33:216–53.

    Article  CAS  Google Scholar 

  16. Skalka N, Caspi M, Caspi E, Loh YP, Rosin-Arbesfeld R. Carboxypeptidase E: a negative regulator of the canonical Wnt signaling pathway. Oncogene. 2013;32:2836–47.

    Article  CAS  Google Scholar 

  17. Zhou K, Liang H, Liu Y, Yang C, Liu P, Jiang X. Overexpression of CPE-∆N predicts poor prognosis in colorectal cancer patients. Tumour Biol. 2013;34:3691–9.

    Article  CAS  Google Scholar 

  18. Lee TK, Murthy SR, Cawley NX, Dhanvantari S, Hewitt SM, Lou H, et al. An N-terminal truncated carboxypeptidase e splice isoform induces tumor growth and is a biomarker for predicting future metastasis in human cancers. J Clin Invest. 2011;121:880–92.

    Article  CAS  Google Scholar 

  19. Murthy SR, Pacak K, Loh YP. Carboxypeptidase E: elevated expression correlated with tumor growth and metastasis in pheochromocytomas and other cancers. Cell Mol Neurobiol. 2010;30:1377–81.

    Article  CAS  Google Scholar 

  20. Wang CY, Mayo MW, Baldwin Jr AS. TNF- and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-kappaB. Science. 1996;274:784–7.

    Article  CAS  Google Scholar 

  21. Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF-κB in development and progression of human cancer. Virchows Archiv Int J Pathol. 2005;446:475–82.

    Article  CAS  Google Scholar 

  22. Lee CH, Jeon YT, Kim SH, Song YS. NF-kappaB as a potential molecular target for cancer therapy. BioFactors. 2007;29:19–35.

    Article  CAS  Google Scholar 

  23. Thomas RP, Farrow BJ, Kim S, May MJ, Hellmich MR, Evers BM. Selective targeting of the nuclear factor-kappaB pathway enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated pancreatic cancer cell death. Surgery. 2002;132:127–34.

    Article  Google Scholar 

  24. Xiong HQ, Abbruzzese JL, Lin E, Wang L, Zheng L, Xie K. NF-kappaB activity blockade impairs the angiogenic potential of human pancreatic cancer cells. Int J Cancer. 2004;108:181–8.

    Article  CAS  Google Scholar 

  25. Biliran Jr H, Wang Y, Banerjee S, Xu H, Heng H, Thakur A, et al. Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11:6075–86.

    Article  CAS  Google Scholar 

  26. Furukawa T, Duguid WP, Rosenberg L, Viallet J, Galloway DA, Tsao MS. Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol. 1996;148:1763–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang L, Mizumoto K, Sato N, Ogawa T, Kusumoto M, Niiyama H, et al. Quantitative determination of apoptotic death in cultured human pancreatic cancer cells by propidium iodide and digitonin. Cancer Lett. 1999;142:129–37.

    Article  CAS  Google Scholar 

  28. Krajnik M, Schafer M, Sobanski P, Kowalewski J, Bloch-Boguslawska E, Zylicz Z, et al. Enkephalin, its precursor, processing enzymes, and receptor as part of a local opioid network throughout the respiratory system of lung cancer patients. Hum Pathol. 2010;41:632–42.

    Article  CAS  Google Scholar 

  29. Chandler NM, Canete JJ, Callery MP. Increased expression of NF-kappa B subunits in human pancreatic cancer cells. J Surg Res. 2004;118:9–14.

    Article  CAS  Google Scholar 

  30. Li Y, Ellis KL, Ali S, El-Rayes BF, Nedeljkovic-Kurepa A, Kucuk O, et al. Apoptosis-inducing effect of chemotherapeutic agents is potentiated by soy isoflavone genistein, a natural inhibitor of NF-kappaB in BxPC-3 pancreatic cancer cell line. Pancreas. 2004;28:e90–5.

    Article  Google Scholar 

  31. Arlt A, Gehrz A, Muerkoster S, Vorndamm J, Kruse ML, Folsch UR, et al. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene. 2003;22:3243–51.

    Article  CAS  Google Scholar 

  32. Wang Z, Zhang Y, Li Y, Banerjee S, Liao J, Sarkar FH. Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther. 2006;5:483–93.

    Article  CAS  Google Scholar 

  33. Shah SA, Potter MW, Hedeshian MH, Kim RD, Chari RS, Callery MP. Pi-3' kinase and NF-kappaB cross-signaling in human pancreatic cancer cells. J Gastrointest Surg Off J Soc Surg Aliment Tract. 2001;5:603–12. discussion 612–603.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Shao, C., Jin, G. et al. Downregulation of CPE regulates cell proliferation and chemosensitivity in pancreatic cancer. Tumor Biol. 35, 12459–12465 (2014). https://doi.org/10.1007/s13277-014-2564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2564-y

Keywords

Navigation