Skip to main content

Advertisement

Log in

Molecular regulation of cervical cancer growth and invasion by VEGFa

  • Research Article
  • Published:
Tumor Biology

Abstract

Although antivascular endothelial growth factor a (VEGFa) treatment has been well applied in cervical cancer therapy, the underlying molecular basis has not been precisely identified. Here, we examined the levels of VEGFa on the tumor growth and invasion in four commonly used human cervical cancer cell lines. We found that overexpression of VEGFa in these lines increased the tumor growth and invasiveness, while inhibition of VEGFa decreased the tumor growth and invasiveness. To figure out the involved signaling pathways, we applied specific inhibitors for ERK/MAPK, JNK, and PI3K/Akt signaling pathways, respectively, to VEGFa-overexpressing cervical cancer lines and found that only inhibition of PI3K/Akt signal transduction abolished VEGFa-induced increases in cell growth and invasiveness. Inhibition of Akt downstream mTor signaling similarly inhibited cell growth and invasion in VEGFa-overexpressing cervical cancer cells, suggesting that VEGFa may activate PI3K/Akt, and subsequently its downstream mTor signaling pathway, to promote cervical cancer cell growth and invasion. Furthermore, the effects of VEGFa-induced activation of mTor signaling cascades appeared to promote cancer cell growth through cyclinD1 and CDK4 activation and promote cancer cell invasion through MMP2 and MMP3. Taken together, our data suggest that anti-VEGFa treatment in cervical cancer may inhibit both tumor cell growth and invasion through PI3k/Akt/mTor signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Delli Carpini J, Karam AK, Montgomery L. Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer. Angiogenesis. 2010;13:43–58.

    Article  PubMed  Google Scholar 

  2. del Campo JM, Prat A, Gil-Moreno A, Perez J, Parera M. Update on novel therapeutic agents for cervical cancer. Gynecol Oncol. 2008;110:S72–6.

    Article  PubMed  Google Scholar 

  3. Zagouri F, Sergentanis TN, Chrysikos D, Filipits M, Bartsch R. Molecularly targeted therapies in cervical cancer. A systematic review. Gynecol Oncol. 2012;126:291–303.

    Article  CAS  PubMed  Google Scholar 

  4. Kim JG. Molecular targeted therapy for advanced gastric cancer. Korean J Intern Med. 2013;28:149–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ilson DH. Angiogenesis in gastric cancer: hitting the target? Lancet. 2014;383:4–6.

    Article  PubMed  Google Scholar 

  6. Scartozzi M, Giampieri R, Loretelli C, Bittoni A, Mandolesi A, Faloppi L, et al. Tumor angiogenesis genotyping and efficacy of first-line chemotherapy in metastatic gastric cancer patients. Pharmacogenomics. 2013;14:1991–8.

    Article  CAS  PubMed  Google Scholar 

  7. Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of VEGF in mice. Diabetologia. 2014;57:991–1000.

    Article  CAS  PubMed  Google Scholar 

  8. Bagri A, Kouros-Mehr H, Leong KG, Plowman GD. Use of anti-vegf adjuvant therapy in cancer: challenges and rationale. Trends Mol Med. 2010;16:122–32.

    Article  CAS  PubMed  Google Scholar 

  9. Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.

    Article  CAS  PubMed  Google Scholar 

  11. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Davidson B, Reich R, Risberg B, Nesland JM. The biological role and regulation of matrix metalloproteinases (mmp) in cancer. Arkh Patol. 2002;64:47–53.

    CAS  PubMed  Google Scholar 

  13. Rhee JS, Coussens LM. Recking mmp function: Implications for cancer development. Trends Cell Biol. 2002;12:209–11.

    Article  CAS  PubMed  Google Scholar 

  14. Mitra A, Chakrabarti J, Chattopadhyay N, Chatterjee A. Membrane-associated mmp-2 in human cervical cancer. J Environ Pathol Toxicol Oncol Off Organ Int Soc Environ Toxicol Cancer. 2003;22:93–100.

    CAS  Google Scholar 

  15. Thompson EW, Yu M, Bueno J, Jin L, Maiti SN, Palao-Marco FL, et al. Collagen induced mmp-2 activation in human breast cancer. Breast Cancer Res Treat. 1994;31:357–70.

    Article  CAS  PubMed  Google Scholar 

  16. Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol. 2013;23:345–56.

    Article  CAS  PubMed  Google Scholar 

  17. Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M. Targeting cell cycle regulation in cancer therapy. Pharmacol Ther. 2013;138:255–71.

    Article  CAS  PubMed  Google Scholar 

  18. Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during g1 and s phases. Nat Rev Mol Cell Biol. 2013;14:518–28.

    Article  CAS  PubMed  Google Scholar 

  19. Lim S, Kaldis P. Cdks, cyclins and ckis: roles beyond cell cycle regulation. Development. 2013;140:3079–93.

    Article  CAS  PubMed  Google Scholar 

  20. Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, et al. M2 macrophages promote beta-cell proliferation by up-regulation of smad7. Proc Natl Acad Sci U S A. 2014;111:E1211–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wang YQ, Guo X, Qiu MH, Feng XY, Sun FY. Vegf overexpression enhances striatal neurogenesis in brain of adult rat after a transient middle cerebral artery occlusion. J Neurosci Res. 2007;85:73–82.

    Article  CAS  PubMed  Google Scholar 

  22. Biggs 3rd WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase b/akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor fkhr1. Proc Natl Acad Sci U S A. 1999;96:7421–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingping Dong.

Additional information

Baohuan Chen and Chunxiao Zhang equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Zhang, C., Dong, P. et al. Molecular regulation of cervical cancer growth and invasion by VEGFa. Tumor Biol. 35, 11587–11593 (2014). https://doi.org/10.1007/s13277-014-2463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2463-2

Keywords

Navigation