Skip to main content

Advertisement

Log in

A multigenic approach to evaluate genetic variants of PLCE1, LXRs, MMPs, TIMP, and CYP genes in gallbladder cancer predisposition

  • Research Article
  • Published:
Tumor Biology

Abstract

Gallbladder cancer (GBC) is a violent neoplasm associated with late diagnosis, unsatisfactory treatment, and poor prognosis. The disease shows complex interplay between multiple genetic variants. We analyzed 15 polymorphisms in nine genes involved in various pathways to find out combinations of genetic variants contributing to GBC risk. The genes included in the study were matrix metalloproteinases (MMP-2, MMP-7, and MMP-9), tissue inhibitor of metalloproteinases (TIMP-2), cytochrome P450 (CYP)1A1, CYP1B1, phospholipase C epsilon 1 (PLCE1), liver X receptor (LXR)-alpha, and LXR-beta. Genotypes were determined by PCR-RFLP and TaqMan probes. Statistical analysis was done by SPSS version 16. Multilocus analysis was performed by Classification and Regression Tree (CART) analysis and multifactor dimensionality reduction (MDR) to gene–gene interactions in modifying GBC risk. In silico analysis was done using various bioinformatics tools (F-SNP, FAST-SNP). Single locus analysis showed association of MMP-2 (−735 C > T, −1306 C > T), MMP-7 − 181 A > G, MMP-9 (P574R, R668Q), TIMP-2 − 418 G > C, CYP1A1-MspI, CYP1A1-Ile462Val, PLCE1 (rs2274223 A > G, rs7922612 T > C) and LXR-beta T > C (rs3546355 G > A, rs2695121 T > C) polymorphisms with GBC risk (p < 0.05) whereas CYP1B1 and LXR-α variants were not associated with GBC risk. Multidimensional reduction analysis revealed LXR-β (rs3546355 G > A, rs2695121 T > C), MMP-2 (−1306 C > T), MMP-9 (R668Q), and PLCE1 rs2274223 A > G to be key players in GBC causation (p < 0.001, CVC = 7/10). The results were further supported by independent CART analysis (p < 0.001). In silico analysis of associated variants suggested change in splicing or transcriptional regulation. Interactome and STRING analysis showed network of associated genes. The study found PLCE1 and LXR-β network interactions as important contributory factors for genetic predisposition in gallbladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Misra S, Chaturvedi A, Misra NC, Sharma ID. Carcinoma of the gallbladder. Lancet Oncol. 2003;4:167–76.

    Article  PubMed  Google Scholar 

  2. Randi G, Franceschi S, La Vecchia C. Gallbladder cancer worldwide: geographical distribution and risk factors. Int J Cancer J Int Cancer. 2006;118:1591–602.

    Article  CAS  Google Scholar 

  3. Eslick GD. Epidemiology of gallbladder cancer. Gastroenterol Clin North Am. 2010;39:307–30. ix.

    Article  PubMed  Google Scholar 

  4. Lazcano-Ponce EC, Miquel JF, Munoz N, Herrero R, Ferrecio C, Wistuba II, et al. Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J Clin. 2001;51:349–64.

    Article  CAS  PubMed  Google Scholar 

  5. Srivastava K, Srivastava A, Sharma KL, Mittal B. Candidate gene studies in gallbladder cancer: a systematic review and meta-analysis. Mutat Res. 2011;728:67–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sharma KL, Misra S, Kumar A, Mittal B. Higher risk of matrix metalloproteinase (MMP-2, 7, 9) and tissue inhibitor of metalloproteinase (TIMP-2) genetic variants to gallbladder cancer. Liver Int. 2012;32:1278–86.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma KL, Umar M, Pandey M, Misra S, Kumar A, Kumar V, Mittal B. Association of potentially functional genetic variants of plce1 with gallbladder cancer susceptibility in north indian population. J Gastrointest Cancer. 2013.

  8. Sharma KL, Misra S, Kumar A, Mittal B. Association of liver x receptors (LXRs) genetic variants to gallbladder cancer susceptibility. Tumour Biol. 2013.

  9. Sharma KL, Agarwal A, Misra S, Kumar A, Kumar V, Mittal B. Association of genetic variants of xenobiotic and estrogen metabolism pathway (CYP1A1 and CYP1B1) with gallbladder cancer susceptibility. Tumour Biol.

  10. Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene–gene and gene–environment interactions. Bioinformatics. 2003;19:376–82.

    Article  CAS  PubMed  Google Scholar 

  11. Lee PH, Shatkay H. F-SNP: Computationally predicted functional SNPs for disease association studies. Nucleic Acids Res. 2008;36:D820–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Yuan HY, Chiou JJ, Tseng WH, Liu CH, Liu CK, Lin YJ, et al. FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res. 2006;34:W635–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wang LD, Zhou FY, Li XM, Sun LD, Song X, Jin Y, et al. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet. 2010;42:759–63.

    Article  CAS  PubMed  Google Scholar 

  14. Abnet CC, Freedman ND, Hu N, Wang Z, Yu K, Shu XO, et al. A shared susceptibility locus in plce1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet. 2010;42:764–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wu C, Hu Z, He Z, Jia W, Wang F, Zhou Y, et al. Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations. Nat Genet. 2011;43:679–84.

    Article  CAS  PubMed  Google Scholar 

  16. Cui XB, Chen YZ, Pang XL, Liu W, Hu JM, Li SG, et al. Multiple polymorphisms within the PLCE1 are associated with esophageal cancer via promoting the gene expression in a Chinese Kazakh population. Gene. 2013;530:315–22.

    Article  CAS  PubMed  Google Scholar 

  17. Chen YZ, Cui XB, Hu JM, Zhang WJ, Li SG, Yang L, et al. Overexpression of PLCE1 in Kazakh esophageal squamous cell carcinoma: implications in cancer metastasis and aggressiveness. APMIS. 2013;121:908–18.

    Article  CAS  PubMed  Google Scholar 

  18. Hao NB, He YF, Zhang D, Luo G, Chen BJ, Zhang Y, et al. PLCE1 polymorphism and upper gastrointestinal cancer risk: a meta-analysis. PLoS One. 2013;8:e67229.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Umar M, Upadhyay R, Mittal B. PLCE1 rs2274223 A>G polymorphism and cancer risk: A meta-analysis. Tumour Biol. 2013.

  20. Zhang J, Roberts TM, Shivdasani RA. Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology. 2011;141:50–61.

    Article  CAS  PubMed  Google Scholar 

  21. Gabbi C, Kim HJ, Barros R, Korach-Andre M, Warner M, Gustafsson JA. Estrogen-dependent gallbladder carcinogenesis in LXRβ−/−female mice. Proc Natl Acad Sci U S A. 2010;107:14763–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Infante J, Rodriguez-Rodriguez E, Mateo I, Llorca J, Vazquez-Higuera JL, Berciano J, et al. Gene–gene interaction between heme oxygenase-1 and liver X receptor-β and Alzheimer's disease risk. Neurobiol Aging. 2010;31:710–4.

    Article  CAS  PubMed  Google Scholar 

  23. Pommier AJ, Dufour J, Alves G, Viennois E, De Boussac H, Trousson A, et al. Liver X receptors protect from development of prostatic intra-epithelial neoplasia in mice. PLoS Genet. 2013;9:e1003483.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Dahlman I, Nilsson M, Gu HF, Lecoeur C, Efendic S, Ostenson CG, et al. Functional and genetic analysis in type 2 diabetes of liver X receptor alleles—a cohort study. BMC Med Genet. 2009;10:27.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Wang J, Einarsson C, Murphy C, Parini P, Bjorkhem I, Gafvels M, et al. Studies on LXR- and FXR-mediated effects on cholesterol homeostasis in normal and cholic acid-depleted mice. J Lipid Res. 2006;47:421–30.

    Article  CAS  PubMed  Google Scholar 

  26. El Roz A, Bard JM, Huvelin JM, Nazih H. LXR agonists and ABCG1-dependent cholesterol efflux in MCF-7 breast cancer cells: Relation to proliferation and apoptosis. Anticancer Res. 2012;32:3007–13.

    PubMed  Google Scholar 

  27. Stenvold H, Donnem T, Andersen S, Al-Saad S, Al-Shibli K, Busund LT, Bremnes RM. Overexpression of matrix metalloproteinase-7 and -9 in NSCLC tumor and stromal cells: correlation with a favorable clinical outcome. Lung Cancer. 75:235-241.

  28. Yang JM, Xu Z, Wu H, Zhu H, Wu X, Hait WN. Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells. Mol Cancer Res. 2003;1:420–7.

    CAS  PubMed  Google Scholar 

  29. Perigny M, Bairati I, Harvey I, Beauchemin M, Harel F, Plante M, et al. Role of immunohistochemical overexpression of matrix metalloproteinases MMP-2 and MMP-11 in the prognosis of death by ovarian cancer. Am J Clin Pathol. 2008;129:226–31.

    Article  PubMed  Google Scholar 

  30. Wang JH, Li LF, Yu Y, Li B, Jin HJ, Shen DH, et al. Establishment and characterization of a cell line, EH-GB2, derived from hepatic metastasis of gallbladder cancer. Oncol Rep. 2012;27:775–82.

    CAS  PubMed  Google Scholar 

  31. Koyama S. Intracellular localization of matrix metalloproteinases and their inhibitors in cultured tumor cell lines: flow cytometric analysis. Oncol Rep. 2006;15:735–8.

    CAS  PubMed  Google Scholar 

  32. Decock J, Paridaens R, Ye S. Genetic polymorphisms of matrix metalloproteinases in lung, breast and colorectal cancer. Clin Genet. 2008;73:197–211.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou G, Zhai Y, Cui Y, Qiu W, Yang H, Zhang X, et al. Functional polymorphisms and haplotypes in the promoter of the MMP2 gene are associated with risk of nasopharyngeal carcinoma. Hum Mutat. 2007;28:1091–7.

    Article  CAS  PubMed  Google Scholar 

  34. Qiu W, Zhou G, Zhai Y, Zhang X, Xie W, Zhang H, et al. No association of MMP-7, MMP-8, and MMP-21 polymorphisms with the risk of hepatocellular carcinoma in a Chinese population. Cancer Epidemiol Biomarkers Prev. 2008;17:2514–8.

    Article  CAS  PubMed  Google Scholar 

  35. Murphy G, Knauper V. Relating matrix metalloproteinase structure to function: why the "Hemopexin" domain? Matrix Biol. 1997;15:511–8.

    Article  CAS  PubMed  Google Scholar 

  36. Trojanek J. matrix metalloproteinases and their tissue inhibitors. Postepy Biochem. 2012;58:353–62.

    CAS  PubMed  Google Scholar 

  37. Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst. 2001;93:178–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The funding for the study was provided by DST and DBT Government of India. Research fellowship to KLS by ICMR, New Delhi is gratefully acknowledged.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balraj Mittal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.L., Rai, R., Srivastava, A. et al. A multigenic approach to evaluate genetic variants of PLCE1, LXRs, MMPs, TIMP, and CYP genes in gallbladder cancer predisposition. Tumor Biol. 35, 8597–8606 (2014). https://doi.org/10.1007/s13277-014-2094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2094-7

Keywords

Navigation