Skip to main content
Log in

Enhancement of radiosensitivity by 5-Aza-CdR through activation of G2/M checkpoint response and apoptosis in osteosarcoma cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Radiation resistance is a major problem preventing successful treatment. Therefore, identifying sensitizers is vitally important for radiotherapy success. Epigenetic events such as DNA methylation have been proposed to mediate the sensitivity of tumor therapy. In this study, we investigated the influence of demethylating agent 5-Aza-2′-deoxycytidine (5-Aza-CdR) on the radiosensitivity of human osteosarcoma cell lines. 5-Aza-CdR was capable of sensitizing three osteosarcoma cells to irradiation in a time-dependent manner, with the maximum effect attained by 48 h. Pretreatment with 5-Aza-CdR synchronized cells in G2/M phase of the cell cycle and enhanced irradiation-induced apoptosis compared with irradiation alone in SaOS2, HOS, and U2OS cells. Moreover, 5-Aza-CdR restored mRNA expressions of 14-3-3σ, CHK2, and DAPK-1 in the three cells, accompanied with demethylation of their promoters. These findings demonstrate that demethylation with 5-Aza-CdR increases radiosensitivity in some osteosarcoma cells through arresting cells at G2/M phase and increasing apoptosis, which is partly mediated by upregulation of 14-3-3σ, CHK2, and DAPK-1 genes, suggesting that 5-Aza-CdR may be a potential radiosensitizer to improve the therapy effect in osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5-Aza-CdR:

5-Aza-2′-deoxycytidine

DNMT:

DNA methyltransferase

IC20 :

Concentration to cause a 20 % reduction in cell proliferation

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

D0 :

Dose to reduce survival to 37 %

SF2:

Surviving fraction at 2 Gy

SER:

Sensitizer enhancement ratio

References

  1. Dai X et al. Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. Med Sci Monit. 2011;17(8):RA177–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ta HT et al. Osteosarcoma treatment: state of the art. Cancer Metastasis Rev. 2009;28(1–2):247–63.

    Article  PubMed  Google Scholar 

  3. Juergens RA, Rudin CM. Aberrant epigenetic regulation. Am Soc Clin Oncol Educ Book. 2013;2013:295–300.

    Article  Google Scholar 

  4. Virani S et al. Cancer epigenetics: a brief review. ILAR J. 2012;53(3–4):359–69.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mani S, Herceg Z. DNA demethylating agents and epigenetic therapy of cancer. Adv Genet. 2010;70:327–40.

    CAS  PubMed  Google Scholar 

  6. Fathi AT, Abdel-Wahab O. Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy. Adv Hematol. 2012;2012:469592.

    Article  PubMed  Google Scholar 

  7. Shih AH et al. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012;12(9):599–612.

    Article  CAS  PubMed  Google Scholar 

  8. Karahoca M, Momparler RL. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2′-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics. 2013;5(1):3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cho HJ et al. The combination effect of sodium butyrate and 5-Aza-2′-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines. World J Surg Oncol. 2009;7:49.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brieger J et al. Pharmacological genome demethylation increases radiosensitivity of head and neck squamous carcinoma cells. Int J Mol Med. 2012;29(3):505–9.

    CAS  PubMed  Google Scholar 

  11. Dunne AL et al. Relationship between clonogenic radiosensitivity, radiation-induced apoptosis and DNA damage/repair in human colon cancer cells. Br J Cancer. 2003;89(12):2277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Y, Meng G, Guo QN. Changes in genomic imprinting and gene expression associated with transformation in a model of human osteosarcoma. Exp Mol Pathol. 2008;84(3):234–9.

    Article  CAS  PubMed  Google Scholar 

  13. Lal G et al. Regulation of 14-3-3sigma expression in human thyroid carcinoma is epigenetically regulated by aberrant cytosine methylation. Cancer Lett. 2008;267(1):165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahmad ST et al. Methylation of the APAF-1 and DAPK-1 promoter region correlates with progression of renal cell carcinoma in North Indian population. Tumour Biol. 2012;33(2):395–402.

    Article  CAS  PubMed  Google Scholar 

  15. Wang H et al. Chk2 down-regulation by promoter hypermethylation in human bulk gliomas. Life Sci. 2010;86(5–6):185–91.

    Article  CAS  PubMed  Google Scholar 

  16. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.

    Article  CAS  PubMed  Google Scholar 

  17. Qiu H et al. DNA methyltransferase inhibitor 5-aza-CdR enhances the radiosensitivity of gastric cancer cells. Cancer Sci. 2009;100(1):181–8.

    Article  CAS  PubMed  Google Scholar 

  18. Dote H et al. Enhancement of in vitro and in vivo tumor cell radiosensitivity by the DNA methylation inhibitor zebularine. Clin Cancer Res. 2005;11(12):4571–9.

    Article  CAS  PubMed  Google Scholar 

  19. De Schutter H et al. A systematic assessment of radiation dose enhancement by 5-Aza-2′-deoxycytidine and histone deacetylase inhibitors in head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2009;73(3):904–12.

    Article  PubMed  Google Scholar 

  20. Kim HJ et al. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity. Radiat Oncol. 2012;7:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trougakos IP et al. Genome-wide transcriptome profile of the human osteosarcoma Sa OS and U-2 OS cell lines. Cancer Genet Cytogenet. 2010;196(2):109–18.

    Article  CAS  PubMed  Google Scholar 

  22. Gravina GL et al. Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Mol Cancer. 2010;9:305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11(4):239–53.

    Article  CAS  PubMed  Google Scholar 

  24. Sinclair WK. Cyclic x-ray responses in mammalian cells in vitro. Radiat Res. 1968;33(3):620–43.

    Article  CAS  PubMed  Google Scholar 

  25. Shin DY et al. Decitabine, a DNA methyltransferases inhibitor, induces cell cycle arrest at G2/M phase through p53-independent pathway in human cancer cells. Biomed Pharmacother. 2013;67(4):305–11.

    Article  CAS  PubMed  Google Scholar 

  26. Jabbour E et al. Evolution of decitabine development: accomplishments, ongoing investigations, and future strategies. Cancer. 2008;112(11):2341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mhawech P et al. Downregulation of 14-3-3sigma in ovary, prostate and endometrial carcinomas is associated with CpG island methylation. Mod Pathol. 2005;18(3):340–8.

    Article  CAS  PubMed  Google Scholar 

  28. Schultz J et al. 14-3-3sigma gene silencing during melanoma progression and its role in cell cycle control and cellular senescence. Mol Cancer. 2009;8:53.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hermeking H, Benzinger A. 14-3-3 proteins in cell cycle regulation. Semin Cancer Biol. 2006;16(3):183–92.

    Article  CAS  PubMed  Google Scholar 

  30. Steiner M et al. 14-3-3sigma mediates G2-M arrest produced by 5-aza-2′-deoxycytidine and possesses a tumor suppressor role in endometrial carcinoma cells. Gynecol Oncol. 2012;127(1):231–40.

    Article  CAS  PubMed  Google Scholar 

  31. Schildhaus HU et al. Promoter hypermethylation of p16INK4a, E-cadherin, O6-MGMT, DAPK and FHIT in adenocarcinomas of the esophagus, esophagogastric junction and proximal stomach. Int J Oncol. 2005;26(6):1493–500.

    CAS  PubMed  Google Scholar 

  32. Leung RC et al. Promoter methylation of death-associated protein kinase and its role in irradiation response in cervical cancer. Oncol Rep. 2008;19(5):1339–45.

    CAS  PubMed  Google Scholar 

  33. Bar-Sela G, Jacobs KM, Gius D. Histone deacetylase inhibitor and demethylating agent chromatin compaction and the radiation response by cancer cells. Cancer J. 2007;13(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ljungman M. The influence of chromatin structure on the frequency of radiation-induced DNA strand breaks: a study using nuclear and nucleoid monolayers. Radiat Res. 1991;126(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  35. Rogakou EP et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273(10):5858–68.

    Article  CAS  PubMed  Google Scholar 

  36. Tashiro S, Sun J. Ionizing radiation-induced DNA damage and repair. Nihon Rinsho. 2012;70(3):383–7.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (81201756) and Natural Science Foundation Project of YN CSTC (2011FZ316 and 2012FD090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chen.

Additional information

Yi Li and PeiLiang Geng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Geng, P., Jiang, W. et al. Enhancement of radiosensitivity by 5-Aza-CdR through activation of G2/M checkpoint response and apoptosis in osteosarcoma cells. Tumor Biol. 35, 4831–4839 (2014). https://doi.org/10.1007/s13277-014-1634-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1634-5

Keywords

Navigation