Skip to main content

Advertisement

Log in

Milk fat globule epidermal growth factor 8 serves a novel biomarker of opisthorchiasis-associated cholangiocarcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Milk fat globule epidermal growth factor 8 (MFG-E8) is a pleiotropic secreted glycoprotein to play roles in mediating immune tolerance and homeostasis maintenance and enhancing angiogenesis. To evaluate its value as a biomarker in opisthorchiasis-associated cholangiocarcinoma (CCA), the present study investigated MFG-E8 expression kinetics during the tumorigenesis in Opisthorchis viverrini infection-induced CCA, and demonstrated its expression in the tumor tissues of CCA patients and its serum level among them. During the tumorigenesis of CCA, MFG-E8 expression was increased in a time-dependent manner with the pathological processes. Absolutely higher expression of MFG-E8 messenger RNA was detected in the tumor tissues from CCA patients, compared with those in adjacent tissues. Immunobiochemical analysis showed that more than 90 % CCA cases were positive and the positive reaction located in the membrane and cytoplasm of the tumor cells. Moreover, the average serum level in the CCA patients was significantly higher than that in healthy individuals and those with O. viverrini infection or other parasitosis. Correlation analysis of MFG-E8 expression with CCA clinicopathology revealed that a high expression of MFG-E8 protein was significantly bound with a poor differentiation, pathological advanced stage, and metastasis of CCA. The multivariation analysis indicated that MFG-E8 was an independent prognostic factor. In addition, short hairpin RNA-mediated MFG-E8 knockdown in CCA cell line obviously suppressed the cell proliferation. Our results strongly suggested that MFG-E8 is a promising biomarker for the diagnosis, prognosis, and therapy target of opisthorchiasis-associated CCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sithithaworn P, Andrews RH, Nguyen VD, Wongsaroj T, Sinuon M, Odermatt P, et al. The current status of opisthorchiasis and clonorchiasis in the Mekong Basin. Parasitol Int. 2012;61:10–6.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Thamavit W, Kongkanuntn R, Tiwawech D, Moore MA. Level of Opisthorchis infestation and carcinogen dose-dependence of cholangiocarcinoma induction in Syrian golden hamsters. Virchows Arch B Cell Pathol Inc Mol Pathol. 1987;54:52–8.

    Article  CAS  Google Scholar 

  3. Vatanasapt V, Uttaravichien T, Mairiang EO, Pairojkul C, Chartbanchachai W, Haswell-Elkins M. Cholangiocarcinoma in north-east Thailand. Lancet. 1990;335:116–7.

    Article  PubMed  CAS  Google Scholar 

  4. Srivatanakul P, Ohshima H, Khlat M, Parkin M, Sukaryodhin S, Brouet I, et al. Opisthorchis viverrini infestation and endogenous nitrosamines as risk factors for cholangiocarcinoma in Thailand. Int J Cancer. 1991;48:821–5.

    Article  PubMed  CAS  Google Scholar 

  5. Thamavit W, Pairojkul C, Tiwawech D, Itoh M, Shirai T, Ito N. Promotion of cholangiocarcinogenesis in the hamster liver by bile duct ligation after dimethylnitrosamine initiation. Carcinogenesis. 1993;14:2415–7.

    Article  PubMed  CAS  Google Scholar 

  6. Shin HR, Oh JK, Masuyer E, Curado MP, Bouvard V, Fang YY, et al. Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci. 2010;101:579–85.

    Article  PubMed  CAS  Google Scholar 

  7. Sripa B, Bethony JM, Sithithaworn P, Kaewkes S, Mairiang E, Loukas A, et al. Opisthorchiasis and Opisthorchis-associated cholangiocarcinoma in Thailand and Laos. Acta Trop. 2011;120 Suppl 1:S158–168.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Sripa B, Brindley PJ, Mulvenna J, Laha T, Smout MJ, Mairiang E, et al. The tumorigenic liver fluke Opisthorchis viverrini-multiple pathways to cancer. Trends Parasitol. 2012;28:395–407.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Ustundag Y, Bayraktar Y. Cholangiocarcinoma: a compact review of the literature. World J Gastroenterol. 2008;14:6458–2466.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Mosconi S, Beretta GD, Labianca R, Zampino MG, Gatta G, Heinemann V. Cholangiocarcinoma. Crit Rev Oncol Hematol. 2009;69:259–70.

    Article  PubMed  Google Scholar 

  11. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology. 2011;54:173–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Gores GJ. Early detection and treatment of cholangiocarcinoma. Liver Transpl. 2000;6:s30–4.

    Article  PubMed  CAS  Google Scholar 

  13. Ni XG, Bai XF, Mao YL, Shao YF, Wu JX, Shan Y, et al. The clinical value of serum CEA, CA19-9, and CA242 in the diagnosis and prognosis of pancreatic cancer. Eur J Surg Oncol. 2005;31:164–9.

    Article  PubMed  CAS  Google Scholar 

  14. Boonjaraspinyo S, Wu Z, Boonmars T, Kaewkes S, Loilome W, Sithithaworn P, et al. Overexpression of PDGFA and its receptor during carcinogenesis of Opisthorchis viverrini-associated cholangiocarcinoma. Parasitol Int. 2012;61:145–50.

    Article  PubMed  CAS  Google Scholar 

  15. Boonjaraspinyo S, Boonmars T, Wu Z, Loilome W, Sithithaworn P, Nagano I, et al. Platelet-derived growth factor may be a potential diagnostic and prognostic marker for cholangiocarcinoma. Tumour Biol. 2012;33:1785–802.

    Article  PubMed  CAS  Google Scholar 

  16. Wu Z, Boonmars T, Nagano I, Boonjaraspinyo S, Pinlaor S, Pairojkul C, et al. Alteration of galectin-1 during tumorigenesis of Opisthorchis viverrini infection-induced cholangiocarcinoma and its correlation with clinicopathology. Tumour Biol. 2012;33:1169–78.

    Article  PubMed  CAS  Google Scholar 

  17. Techasen A, Loilome W, Namwat N, Duenngai K, Cha'on U, Thanan R, et al. Opisthorchis viverrini-antigen induces expression of MARCKS during inflammation-associated cholangiocarcinogenesis. Parasitol Int. 2012;61:140–4.

    Article  PubMed  CAS  Google Scholar 

  18. Loilome W, Wechagama P, Namwat N, Jusakul A, Sripa B, Miwa M, et al. Expression of oxysterol binding protein isoforms in opisthorchiasis-associated cholangiocarcinoma: a potential molecular marker for tumor metastasis. Parasitol Int. 2012;61:136–9.

    Article  PubMed  CAS  Google Scholar 

  19. Yonglitthipagon P, Pairojkul C, Chamgramol Y, Mulvenna J, Sripa B (2010) Up-regulation of annexin A2 in cholangiocarcinoma caused by Opisthorchis viverrini and its implication as a prognostic marker. Int J Parasitol 40:1203–1212

    Google Scholar 

  20. Sripa B, Thinkhamrop B, Mairiang E, Laha T, Kaewkes S, Sithithaworn P, et al. Elevated plasma IL-6 associates with increased risk of advanced fibrosis and cholangiocarcinoma in individuals infected by Opisthorchis viverrini. PLoS Negl Trop Dis. 2012;6:e1654.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Wu Z, Boonmars T, Boonjaraspinyo S, Nagano I, Pinlaor S, Puapairoj A, et al. Candidate genes involving in tumorigenesis of cholangiocarcinoma induced by Opisthorchis viverrini infection. Parasitol Res. 2011;109:657–73.

    Article  PubMed  Google Scholar 

  22. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002;417:182–7.

    Article  PubMed  CAS  Google Scholar 

  23. Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science. 2004;304:1147–50.

    Article  PubMed  CAS  Google Scholar 

  24. Atabai K, Fernandez R, Huang X, Ueki I, Kline A, Li Y, et al. Mfge8 is critical for mammary gland remodeling during involution. Mol Biol Cell. 2005;16:5528–37.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Silvestre JS, Théry C, Hamard G, Boddaert J, Aguilar B, Delcayre A, et al. Lactadherin promotes VEGFdependent neovascularization. Nat Med. 2005;11:499–506.

    Article  PubMed  CAS  Google Scholar 

  26. Ensslin MA, Shur BD. Identification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding. Cell. 2003;114:405–17.

    Article  PubMed  CAS  Google Scholar 

  27. Bu HF, Zuo XL, Wang X, Ensslin MA, Koti V, Hsueh W, et al. Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J Clin Invest. 2007;117:3673–83.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Larocca D, Peterson JA, Urrea R, Kuniyoshi J, Bistrain AM, Ceriani RL. A Mr 46 000 human milk fat globule protein that is highly expressed in human breast tumors contains factor VIII-like domains. Cancer Res. 1991;51:4994–8.

    PubMed  CAS  Google Scholar 

  29. Yang C, Hayashida T, Forster N, Li C, Shen D, Maheswaran S, et al. The integrin alpha(v)beta(3–5) ligand MFG-E8 is a p63/p73 target gene in triple-negative breast cancers but exhibits suppressive functions in ER(+) and erbB2(+) breast cancers. Cancer Res. 2011;71:937–45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Oba J, Moroi Y, Nakahara T, Abe T, Hagihara A, Furue M. Expression of milk fat globule epidermal growth factor-VIII may be an indicator of poor prognosis in malignant melanoma. Br J Dermatol. 2011;165:506–12.

    Article  PubMed  CAS  Google Scholar 

  31. Sugano G, Bernard-Pierrot I, Laé M, Battail C, Allory Y, Stransky N, et al. Milk fat globule–epidermal growth factor–factor VIII (MFGE8)/lactadherin promotes bladder tumor development. Oncogene. 2011;30:642–53.

    Article  PubMed  CAS  Google Scholar 

  32. Neutzner M, Lopez T, Feng X, Bergmann-Leitner ES, Leitner WW, Udey MC. MFG-E8/lactadherin promotes tumor growth in an angiogenesis-dependent transgenic mouse model of multistage carcinogenesis. Cancer Res. 2007;67:6777–85.

    Article  PubMed  CAS  Google Scholar 

  33. Jinushi M, Nakazaki Y, Carrasco DR, Draganov D, Souders N, Johnson M, et al. Milk fat globule EGF-8 promotes melanoma progression through coordinated Akt and twist signaling in the tumor microenvironment. Cancer Res. 2008;68:8889–98.

    Article  PubMed  CAS  Google Scholar 

  34. Couto JR, Taylor MR, Godwin SG, Ceriani RL, Peterson JA. Cloning and sequence analysis of human breast epithelial antigen BA46 reveals an RGD cell adhesion sequence presented on an epidermal growth factor-like domain. DNA Cell Biol. 1996;15:281–6.

    Article  PubMed  CAS  Google Scholar 

  35. Wang M, Fu Z, Wu J, Zhang J, Jiang L, Khazan B, et al. MFG-E8 activates proliferation of vascular smooth muscle cells via integrin signaling. Aging Cell. 2012;11:500–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Boonmars T, Wu Z, Boonjaruspinyo S, Pinlaor S, Nagano I, Takahashi Y, et al. Alterations of gene expression of RB pathway in Opisthorchis viverrini infection-induced cholangiocarcinoma. Parasitol Res. 2009;105:1273–81.

    Article  PubMed  Google Scholar 

  37. Boonmars T, Wu Z, Boonjaraspinyo S, Puapairoj A, Kaewsamut B, Nagano I, et al. Involvement of c-Ski oncoprotein in carcinogenesis of cholangiocacinoma induced by Opisthorchis viverrini and N-nitrosodimethylamine. Pathol Oncol Res. 2011;17:219–27.

    Article  PubMed  CAS  Google Scholar 

  38. Watanabe T, Totsuka R, Miyatani S, Kurata S, Sato S, Katoh I, et al. Production of the long and short forms of MFG-E8 by epidermal keratinocytes. Cell Tissue Res. 2005;321:185–93.

    Article  PubMed  CAS  Google Scholar 

  39. Ensslin MA, Shur BD. The EGF repeat and discoidin domain protein, SED1/MFG-E8, is required for mammary gland branching morphogenesis. Proc Natl Acad Sci U S A. 2007;104:2715–20.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Giuffrida MG, Cavaletto M, Giunta C, Conti A, Godovac-Zimmermann J. Isolation and characterization of full and truncated forms of human breast carcinoma protein BA46 from human milk fat globule membranes. J Protein Chem. 1998;17:143–8.

    Article  PubMed  CAS  Google Scholar 

  41. Carrascosa C, Obula RG, Missiaglia E, Lehr HA, Delorenzi M, Frattini M, et al. MFG-E8/lactadherin regulates cyclins D1/D3 expression and enhances the tumorigenic potential of mammary epithelial cells. Oncogene. 2012;31:1521–32.

    Article  PubMed  CAS  Google Scholar 

  42. Nakatani H, Yasueda T, Oshima K, Nadano D, Matsuda T. Re-evaluation of milk-fat globule EGF-factor VIII (MFG-E8) as an intrinsic component of the mouse milk-fat globule membrane. Biosci Biotechnol Biochem. 2012;76:2055–60.

    Article  PubMed  CAS  Google Scholar 

  43. Newburg DS, Peterson JA, Ruiz-Palacios GM, Matson DO, Morrow AL, Shults J, et al. Role of human-milk lactadherin in protection against symptomatic rotavirus infection. Lancet. 1998;351:1160–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Grant-in-Aid for Scientific Research (24590504) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Khon Kaen University and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Health Cluster (SHep-GMS). The authors are thankful to Dr Jianxin Sun, an epidemiologist at Connecticut Department of Public Health, for his critical reading and editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiliang Wu or Thidarut Boonmars.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Boonmars, T., Nagano, I. et al. Milk fat globule epidermal growth factor 8 serves a novel biomarker of opisthorchiasis-associated cholangiocarcinoma. Tumor Biol. 35, 1985–1995 (2014). https://doi.org/10.1007/s13277-013-1264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1264-3

Keywords

Navigation