Skip to main content

Advertisement

Log in

MicroRNA-200a/b influenced the therapeutic effects of curcumin in hepatocellular carcinoma (HCC) cells

  • Research Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) play an essential role in regulating gene expression in normal and malignant cells. Expression of the microRNA-200 (miR-200) family has been correlated with malignancy in cancers. However, whether miR-200a/b plays a role in curcumin-mediated treatment of hepatocellular carcinoma (HCC) is unknown. We performed miRNA array analyses in two different HCC cell lines (HepG2 and HepJ5). The expression patterns of miR-200 family members were assessed with real-time PCR. We overexpressed miR-200 family members using a lentiviral system and selected stably transduced clones with antibiotics. The anticancer effects of curcumin on J5-200a, J5-200b, and J5-control cells were assessed by MTT assay, flow cytometry cell cycle analysis, and TUNEL assay. We found that HepG2 cells, which were more resistant to curcumin treatment than HepJ5 cells, expressed higher levels of miR-200a/b. The MTT assay revealed that the overexpression of miR-200a/b in HepJ5 cells conferred enhanced resistance to curcumin treatment compared with the control cells. By cell cycle analysis and TUNEL assay, we found that apoptosis was increased dramatically in J5-control cells compared with J5-200a and J5-200b cells after curcumin treatment. Finally, we evaluated the levels of Bcl-2, Bax, and Bad, and found a decrease of Bcl-2 levels and increase of Bad levels in the J5-control cells treated with curcumin. The expression levels of miR-200a/b might determine the therapeutic efficacy of curcumin on HCC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

miR-200:

MicroRNA-200

HCC:

Hepatocellular carcinoma

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    Article  PubMed  Google Scholar 

  2. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362(9399):1907–17.

    Article  PubMed  Google Scholar 

  3. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–27.

    Article  CAS  PubMed  Google Scholar 

  4. Cabrera R, Nelson DR. Review article: the management of hepatocellular carcinoma. Aliment Pharmacol Ther. 2010;31(4):461–76.

    Article  CAS  PubMed  Google Scholar 

  5. Keating GM, Santoro A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs. 2009;69(2):223–40.

    Article  CAS  PubMed  Google Scholar 

  6. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.

    Article  CAS  PubMed  Google Scholar 

  7. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595:1–75.

    Article  PubMed  Google Scholar 

  8. Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 1995;94(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  9. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269(2):199–225.

    Article  CAS  PubMed  Google Scholar 

  10. Chang YJ, Tai CJ, Kuo LJ, Wei PL, Liang HH, Liu TZ, et al. Glucose-regulated protein 78 (GRP78) mediated the efficacy to curcumin treatment on hepatocellular carcinoma. Ann Surg Oncol. 2011;18(8):2395–403.

    Article  PubMed  Google Scholar 

  11. Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 2002;512(1–3):334–40.

    Article  CAS  PubMed  Google Scholar 

  12. Cen L, Hutzen B, Ball S, DeAngelis S, Chen CL, Fuchs JR, et al. New structural analogues of curcumin exhibit potent growth suppressive activity in human colorectal carcinoma cells. BMC Cancer. 2009;9:99.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans. 2008;36(Pt 6):1224–31.

    Article  CAS  PubMed  Google Scholar 

  14. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9(2):102–14.

    Article  CAS  PubMed  Google Scholar 

  15. Slack FJ, Weidhaas JB. MicroRNAs as a potential magic bullet in cancer. Future Oncol. 2006;2(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  16. Pogribny IP. MicroRNA dysregulation during chemical carcinogenesis. Epigenomics. 2009;1(2):281–90.

    Article  CAS  PubMed  Google Scholar 

  17. Mongroo PS, Rustgi AK. The role of the miR-200 family in epithelial–mesenchymal transition. Cancer Biol Ther. 2010;10(3):219–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Korpal M, Kang Y. The emerging role of miR-200 family of microRNAs in epithelial–mesenchymal transition and cancer metastasis. RNA Biol. 2008;5(3):115–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T, et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med. 2011;17(9):1101–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hsu ML, Chen SW, Lin KH, Liao SK, Chang KS. Cytokine regulation of HIV-1 LTR transactivation in human hepatocellular carcinoma cell lines. Cancer Lett. 1995;94(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  21. Chang YJ, Chiu CC, Wu CH, An J, Wu CC, Liu TZ, et al. Glucose-regulated protein 78 (GRP78) silencing enhances cell migration but does not influence cell proliferation in hepatocellular carcinoma. Ann Surg Oncol. 2010;17(6):1703–9.

    Article  PubMed  Google Scholar 

  22. Chiou JF, Tai CJ, Huang MT, Wei PL, Wang YH, An J, et al. Glucose-regulated protein 78 is a novel contributor to acquisition of resistance to sorafenib in hepatocellular carcinoma. Ann Surg Oncol. 2010;17(2):603–12.

    Article  PubMed  Google Scholar 

  23. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lai EC, Choi TK, Cheng CH, Mok FP, Fan ST, Tan ES, et al. Doxorubicin for unresectable hepatocellular carcinoma. A prospective study on the addition of verapamil. Cancer. 1990;66(8):1685–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lee J, Park JO, Kim WS, Park SH, Park KW, Choi MS, et al. Phase II study of doxorubicin and cisplatin in patients with metastatic hepatocellular carcinoma. Cancer Chemother Pharmacol. 2004;54(5):385–90.

    Article  CAS  PubMed  Google Scholar 

  26. Yeo W, Mok TS, Zee B, Leung TW, Lai PB, Lau WY, et al. A randomized phase III study of doxorubicin versus cisplatin/interferon alpha-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J Natl Cancer Inst. 2005;97(20):1532–8.

    Article  CAS  PubMed  Google Scholar 

  27. Ikeda M, Okusaka T, Ueno H, Takezako Y, Morizane C. A phase II trial of continuous infusion of 5-fluorouracil, mitoxantrone, and cisplatin for metastatic hepatocellular carcinoma. Cancer. 2005;103(4):756–62.

    Article  CAS  PubMed  Google Scholar 

  28. O'Reilly EM, Stuart KE, Sanz-Altamira PM, Schwartz GK, Steger CM, Raeburn L, et al. A phase II study of irinotecan in patients with advanced hepatocellular carcinoma. Cancer. 2001;91(1):101–5.

    Article  PubMed  Google Scholar 

  29. Louafi S, Boige V, Ducreux M, Bonyhay L, Mansourbakht T, de Baere T, et al. Gemcitabine plus oxaliplatin (GEMOX) in patients with advanced hepatocellular carcinoma (HCC): results of a phase II study. Cancer. 2007;109(7):1384–90.

    Article  CAS  PubMed  Google Scholar 

  30. Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, et al. Chemopreventive and therapeutic effects of curcumin. Cancer Lett. 2005;223(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  31. Lev-Ari S, Vexler A, Starr A, Ashkenazy-Voghera M, Greif J, Aderka D, et al. Curcumin augments gemcitabine cytotoxic effect on pancreatic adenocarcinoma cell lines. Cancer Invest. 2007;25(6):411–8.

    Article  CAS  PubMed  Google Scholar 

  32. Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res. 2007;67(8):3853–61.

    Article  CAS  PubMed  Google Scholar 

  33. Mukhopadhyay A, Banerjee S, Stafford LJ, Xia C, Liu M, Aggarwal BB. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene. 2002;21(57):8852–61.

    Article  CAS  PubMed  Google Scholar 

  34. Reddy S, Rishi AK, Xu H, Levi E, Sarkar FH, Majumdar AP. Mechanisms of curcumin- and EGF-receptor related protein (ERRP)-dependent growth inhibition of colon cancer cells. Nutr Cancer. 2006;55(2):185–94.

    Article  CAS  PubMed  Google Scholar 

  35. Darvesh AS, Aggarwal BB, Bishayee A. Curcumin and liver cancer: a review. Curr Pharm Biotechnol. 2012;13(1):218–28.

    Article  CAS  PubMed  Google Scholar 

  36. Qian H, Yang Y, Wang X. Curcumin enhanced adriamycin-induced human liver-derived Hepatoma G2 cell death through activation of mitochondria-mediated apoptosis and autophagy. Eur J Pharm Sci. 2011;43(3):125–31.

    Article  CAS  PubMed  Google Scholar 

  37. Han YM, Shin DS, Lee YJ, Ismail IA, Hong SH, Han DC, et al. 2-Hydroxycurcuminoid induces apoptosis of human tumor cells through the reactive oxygen species-mitochondria pathway. Bioorg Med Chem Lett. 2011;21(2):747–51.

    Article  CAS  PubMed  Google Scholar 

  38. Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010;70(9):3606–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Howe EN, Cochrane DR, Richer JK. Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res: BCR. 2011;13(2):R45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant from Taipei Medical University and Shuang Ho Hospital (101-TMU-SHH-12) and National Science Council (NSC101-2314-B-038-030-MY2).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Te Huang or Yu-Jia Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, HH., Wei, PL., Hung, CS. et al. MicroRNA-200a/b influenced the therapeutic effects of curcumin in hepatocellular carcinoma (HCC) cells. Tumor Biol. 34, 3209–3218 (2013). https://doi.org/10.1007/s13277-013-0891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0891-z

Keywords

Navigation