Skip to main content

Advertisement

Log in

Calreticulin expression in infiltrating ductal breast carcinomas: relationships with disease progression and humoral immune responses

  • Research Article
  • Published:
Tumor Biology

Abstract

The aim of this study was to evaluate calreticulin expression in infiltrating ductal breast carcinomas (IDCAs), as well as its relationships with clinicopathological parameters of the disease. Using a two-dimensional gel electrophoresis/matrix-assisted laser desorption ionization time of flight mass spectrometry investigation coupled to an immunohistochemical approach, we have assessed the expression of calreticulin in IDCAs, as well as in other types of breast tumors. The humoral immune response against calreticulin was estimated using a serological proteomics-based strategy. Proteomic analyses revealed an increased expression of calreticulin in IDCA tumors. Using immunohistochemistry, overexpression of calreticulin was confirmed in 51 additional tumor specimens. Statistical analyses revealed, however, no significant correlations between calreticulin expression and clinicopathological parameters of the disease including tumor stage, patient age, SBR grade, and lymph node metastasis occurrence. A significant association was found, however, with estrogen receptor status. This study demonstrates the upregulation of calreticulin in IDCA tissues which may highlight its involvement in breast cancer development. Our findings also support a link between calreticulin expression and estrogen transduction pathways. Our results do not, however, support the involvement of calreticulin in the development of a humoral immune response in IDCAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hill C, Doyon F. Frequency of cancer in France: 2004 update. Bull Cancer. 2004;91:9–14.

    PubMed  Google Scholar 

  2. Hondermarck H. Breast cancer: when proteomics challenges biological complexity. Mol Cell Proteomics. 2003;2:281–91.

    PubMed  CAS  Google Scholar 

  3. Somiari RI, Sullivan A, Russell S, Somiari S, Hu H, Jordan R, George A, Katenhusen R, Buchowiecka A, Arciero C, Brzeski H, Hooke J, Shriver C. High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast. Proteomics. 2003;3:1863–73.

    Article  PubMed  CAS  Google Scholar 

  4. Bisca A, D’Ambrosio C, Scaloni A, Puglisi F, Aprile G, Piga A, Zuiani C, Bazzocchi M, Di Loreto C, Paron I, Tell G, Damante G. Proteomic evaluation of core biopsy specimens from breast lesions. Cancer Lett. 2004;204:79–86.

    Article  PubMed  CAS  Google Scholar 

  5. Bergman AC, Benjamin T, Alaiya A, Waltham M, Sakaguchi K, Franzén B, Linder S, Bergman T, Auer G, Appella E, Wirth PJ, Jörnvall H. Identification of gel-separated tumor marker proteins by mass spectrometry. Electrophoresis. 2000;21:679–86.

    Article  PubMed  CAS  Google Scholar 

  6. He QY, Chen J, Kung HF, Yuen AP, Chiu JF. Identification of tumor-associated proteins in oral tongue squamous cell carcinoma by proteomics. Proteomics. 2004;4:271–8.

    Article  PubMed  CAS  Google Scholar 

  7. Dejeans N, Glorieux C, Guenin S, Beck R, Sid B, Rousseau R, Bisig B, Delvenne P, Buc Calderon P, Verrax J. Overexpression of GRP94 in breast cancer cells resistant to oxidative stress promotes high levels of cancer cell proliferation and migration: implications for tumor recurrence. Free Radic Biol Med. 2012;52:993–1002.

    Article  PubMed  CAS  Google Scholar 

  8. O’Neill PA, Shaaban AM, West CR, Dodson A, Jarvis C, Moore P, Davies MP, Sibson DR, Foster CS. Increased risk of malignant progression in benign proliferating breast lesions defined by expression of heat shock protein 27. Br J Cancer. 2004;90:182–8.

    Article  PubMed  Google Scholar 

  9. Gibert B, Eckel B, Gonin V, Goldschneider D, Fombonne J, Deux B, Mehlen P, Arrigo AP, Clézardin P, Diaz-Latoud C. Targeting heat shock protein 27 (HspB1) interferes with bone metastasis and tumour formation in vivo. Br J Cancer. 2012;107:63–70.

    Article  PubMed  CAS  Google Scholar 

  10. Wulfkuhle JD, Sgroi DC, Krutzsch H, McLean K, McGarvey K, Knowlton M, Chen S, Shu H, Sahin A, Kurek R, Wallwiener D, Merino MJ, Petricoin 3rd EF, Zhao Y, Steeg PS. Proteomics of human breast ductal carcinoma in situ. Cancer Res. 2002;62:6740–9.

    PubMed  CAS  Google Scholar 

  11. Diehl MC, Idowu MO, Kimmelshue K, York TP, Elmore LW, Holt SE. Elevated expression of nuclear Hsp90 in invasive breast tumors. Cancer Biol Ther. 2009;8:1952–61.

    Article  PubMed  CAS  Google Scholar 

  12. Vercoutter-Edouart AS, Lemoine J, Le Bourhis X, Louis H, Boilly B, Nurcombe V, Révillion F, Peyrat JP, Hondermarck H. Proteomic analysis reveals that 14-3-3sigma is down-regulated in human breast cancer cells. Cancer Res. 2001;61:76–80.

    PubMed  CAS  Google Scholar 

  13. Li DQ, WangL FF, HouYF LJM, Wei-Chen ZR, Wu J, Lu JS, Di GH, Ou ZL, Xia QC, Shen ZZ, Shao ZM. Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics. 2006;6:3352–68.

    Article  PubMed  CAS  Google Scholar 

  14. Vigontina OG, Efimenko OA, Yakovenko LF, Kiyamova RG, Filonenko VV, Gout IT, Ros NV, Kosey NV, Tatarchuk TF, Sidorik LL, Matsuka GK. Chaperon Hsp-60 as autoantigen in development of dyshormonal breast diseases. Exp Oncol. 2002;24:112–5.

    CAS  Google Scholar 

  15. Conroy SE, Sasieni PD, Fentiman I, Latchman DS. Autoantibodies to the 90 kDa heat shock protein and poor survival in breast cancer patients. Eur J Cancer. 1998;34:942–3.

    PubMed  CAS  Google Scholar 

  16. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  17. O’Farrell PZ, Goodman HM, O’Farrell PH. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977;12:1133–41.

    Article  PubMed  Google Scholar 

  18. He Y, Wu Y, Mou Z, Li W, Zou L, Fu T, et al. Proteomics-based identification of HSP60 as a tumor-associated antigen in colorectal cancer. Proteomics. Clin Appl. 2007;1:336–42.

    Article  CAS  Google Scholar 

  19. Martins I, Kepp O, Galluzzi L, Senovilla L, Schlemmer F, Adjemian S, Menger L, Michaud M, Zitvogel L, Kroemer G. Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Ann N Y Acad Sci. 2010;1209:77–82.

    Article  PubMed  CAS  Google Scholar 

  20. Fraser SA, Karimi R, Michalak M, Hudig D. Perforin lytic activity is controlled by calreticulin. J Immunol. 2000;164:4150–5.

    PubMed  CAS  Google Scholar 

  21. Prathyuman S, Sellappa S, Joseph S, Keyan KS. Enhanced calreticulin expression triggers apoptosis in the MCF-7 cell line. Asian Pac J Cancer Prev. 2010;11:1133–6.

    PubMed  Google Scholar 

  22. Kiang JG, Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther. 1998;80:183–201.

    Article  PubMed  CAS  Google Scholar 

  23. Erić-Nikolić A, Milovanović Z, Sánchez D, Pekáriková A, Džodić R, Matić IZ, Tučková L, Jevrić M, Buta M, Rašković S, Juranić Z. Overexpression of calreticulin in malignant and benign breast tumors: relationship with humoral immunity. Oncology. 2012;82:48–55.

    Article  PubMed  Google Scholar 

  24. Lwin ZM, Guo C, Salim A, Yip GW, Chew FT, Nan J, Thike AA, Tan PH, Bay BH. Clinicopathological significance of calreticulin in breast invasive ductal carcinoma. Mod Pathol. 2010;23:1559–66.

    Article  PubMed  CAS  Google Scholar 

  25. Ding SJ, Li Y, Shao XX, Zhou H, Zeng R, Tang ZY, Xia QC. Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics. 2004;4:982–94.

    Article  PubMed  CAS  Google Scholar 

  26. Dissemond J, Busch M, Kothen T, Mörs J, Weimann TK, Lindeke A, Goos M, Wagner SN. Differential downregulation of endoplasmic reticulum-residing chaperones calnexin and calreticulin in human metastatic melanoma. Cancer Lett. 2004;203:225–31.

    Article  PubMed  CAS  Google Scholar 

  27. Pike SE, Yao L, Setsuda J, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Atreya CD, Teruya-Feldstein J, Wirth P, Gupta G, Tosato G. Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood. 1999;94:2461–8.

    PubMed  CAS  Google Scholar 

  28. Platet N, Cunat S, Chalbos D, Rochefort H, Garcia M. Unliganded and liganded estrogen receptors protect against cancer invasion via different mechanisms. Mol Endocrinol. 2000;14:999–1009.

    Article  PubMed  CAS  Google Scholar 

  29. Al-Dhaheri MH, Shah YM, Basrur V, Pind S, Rowan BG. Identification of novel proteins induced by estradiol, 4-hydroxytamoxifen and acolbifene in T47D breast cancer cells. Steroids. 2006;71:966–78.

    Article  PubMed  CAS  Google Scholar 

  30. Burns K, Duggan B, Atkinson EA, Famulski KS, Nemer M, Bleackley RC, Michalak M. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature. 1994;367:476–80.

    Article  PubMed  CAS  Google Scholar 

  31. Dedhar S, Rennie PS, Shago M, Hagesteijn CY, Yang H, Filmus J, Hawley RG, Bruchovsky N, Cheng H, Matusik RJ, Giguère V. Inhibition of nuclear hormone receptor activity by calreticulin. Nature. 1994;367:480–3.

    Article  PubMed  CAS  Google Scholar 

  32. Fu Y, Li J, Lee AS. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res. 2007;67:3734–40.

    Article  PubMed  CAS  Google Scholar 

  33. Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, Kluger HM. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 2007;67:2932–7.

    Article  PubMed  CAS  Google Scholar 

  34. Gong J, Zhang Y, Durfee J, Weng D, Liu C, Koido S, Song B, Apostolopoulos V, Calderwood SK. A heat shock protein 70-based vaccine with enhanced immunogenicity for clinical use. J Immunol. 2010;184:488–96.

    Article  PubMed  CAS  Google Scholar 

  35. Udono H, Levey DL, Srivastava PK, Udono H, Levey DL, Srivastava PK. Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci USA. 1994;91:3077–81.

    Article  PubMed  CAS  Google Scholar 

  36. Basu S, Srivastava PK. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med. 1999;189:797–802.

    Article  PubMed  CAS  Google Scholar 

  37. Berwin B, Nicchitta CV. To find the road traveled to tumor immunity: the trafficking itineraries of molecular chaperones in antigen-presenting cells. Traffic. 2001;2:690–7.

    Article  PubMed  CAS  Google Scholar 

  38. Von Mensdorff-Pouilly S, Petrakou E, Kenemans P, Van Uf felen K, Verstraeten AA, Snijdewint FG, et al. Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and n-acetylg alactosamine (GalNA c) peptides. Int J Cancer. 2000;86:702–12.

    Article  Google Scholar 

  39. Le Naour F, Brichory F, Misek DE, Bréchot C, Hanash SM, Beretta L. A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol Cell Proteomics. 2002;1:197–203.

    Article  PubMed  Google Scholar 

  40. Hong SH, Misek DE, Wang H, Puravs E, Giordano TJ, Greenson JK, Brenner DE, Simeone DM, Logsdon CD, Hanash SM. An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Res. 2004;64:5504–10.

    Article  PubMed  CAS  Google Scholar 

  41. Pekáriková A, Sánchez D, Palová-Jelínková L, Simsová M, Benes Z, Hoffmanová I, Drastich P, Janatková I, Mothes T, Tlaskalová-Hogenová H, Tucková L. Calreticulin is a B cell molecular target in some gastrointestinal malignancies. Clin Exp Immunol. 2010;160:215–22.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by le Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, le Ministère de la Santé Publique de la République Tunisienne, and by the Centre National de Recherche Scientifique (Strasbourg, France).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Chahed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabbage, M., Trimeche, M., Bergaoui, S. et al. Calreticulin expression in infiltrating ductal breast carcinomas: relationships with disease progression and humoral immune responses. Tumor Biol. 34, 1177–1188 (2013). https://doi.org/10.1007/s13277-013-0661-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0661-y

Keywords

Navigation