Skip to main content

Advertisement

Log in

Association of a p73 exon 2 G4C14-to-A4T14 polymorphism with risk of hepatocellular carcinoma in a Chinese population

  • Research Article
  • Published:
Tumor Biology

Abstract

P73, a p53 homolog, has some p53-like activities and plays an important role in modulating cell cycle, apoptosis, and DNA repair. A potentially functional dinucleotide polymorphism, G4C14-to-A4T14, has been identified in the 5′ untranslated region of exon 2 of the p73 gene, which may theoretically form a stem-loop structure and affect gene expression. We hypothesized that genetic variants in p73 may modify individual susceptibility to hepatocellular carcinoma (HCC). To test this hypothesis that these two common variants play a role in HCC susceptibility, we conducted a hospital-based case–control study of 476 HCC patients and 526 cancer-free controls in a Chinese population. The matrix-assisted laser desorption ionization time-of-flight mass spectrometry method was performed to detect these polymorphisms. The results showed that the genotype and allele frequencies of the p73 G4C14-A4T14 did not differ significantly between the HCC patients and the control group (all P values are above 0.05). However, with stratification analysis by age, sex, smoking status, drinking status, HBV carrier state, and family history of cancer, we found that the variant genotypes (GC/AT + AT/AT) of the p73 G4C14-A4T14 was associated with a significant increased risk of HCC among HbsAg-positive individuals (adjusted OR = 2.19, 95 % CI = 1.25–3.83) and among women (adjusted OR = 2.62, 95 % CI = 1.47, 4.66). These results suggest that the p73 G4C14-to-A4T14 dinucleotide polymorphism may play a role in the development of chronic HBV-infected HCC in the Chinese population, especially among women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HCC:

Hepatocellular carcinoma

HBV:

Hepatitis B virus

OR:

Odds ratio

CI:

Confidence interval

SNP:

Single nucleotide polymorphisms

HWE:

Hardy–Weinberg equilibrium

References

  1. Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol. 2008;14:4300–8.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Heneghan MA, Johnson PJ, Clare M, et al. Frequency and nature of cytokine gene polymorphisms in hepatocellular carcinoma in Hong Kong Chinese. Int J Gastrointest Cancer. 2003;34:19–26.

    Article  PubMed  CAS  Google Scholar 

  4. Kato N, Ji G, Wang Y, et al. Large-scale search of single nucleotide polymorphisms for hepatocellular carcinoma susceptibility genes in patients with hepatitis C. Hepatology. 2005;42:846–53.

    Article  PubMed  CAS  Google Scholar 

  5. Kim YJ, Lee HS. Single nucleotide polymorphisms associated with hepatocellular carcinoma in patients with chronic hepatitis B virus infection. Intervirology. 2005;48:10–5.

    Article  PubMed  CAS  Google Scholar 

  6. Yang A, Walker N, Bronson R, et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature. 2000;404:99–103.

    Article  PubMed  CAS  Google Scholar 

  7. Flores ER, Tsai KY, Crowley D, et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature. 2002;416:560–4.

    Article  PubMed  CAS  Google Scholar 

  8. Wang XQ, Ongkeko WM, Lau AW, et al. A possible role of p73 on the modulation of p53 level through MDM2. Cancer Res. 2001;61:1598–603.

    PubMed  CAS  Google Scholar 

  9. Weinberg RA. Oncogenes and tumor suppressor genes. CA Cancer J Clin. 1994;44:160–70.

    Article  PubMed  CAS  Google Scholar 

  10. Cai YC, Yang GY, Nie Y, et al. Molecular alterations of p73 in human esophageal squamous cell carcinomas: loss of heterozygosity occurs frequently; loss of imprinting and elevation of p73 expression may be related to defective p53. Carcinogenesis. 2000;21:683–9.

    Article  PubMed  CAS  Google Scholar 

  11. Mai M, Yokomizo A, Qian C, et al. Activation of p73 silent allele in lung cancer. Cancer Res. 1998;58:2347–9.

    PubMed  CAS  Google Scholar 

  12. Nomoto S, Haruki N, Kondo M, et al. Search for mutations and examination of allelic expression imbalance of the p73 gene at 1p36.33 in human lung cancers. Cancer Res. 1998;58:1380–3.

    PubMed  CAS  Google Scholar 

  13. Takahashi H, Ichimiya S, Nimura Y, et al. Mutation, allelotyping, and transcription analyses of the p73 gene in prostatic carcinoma. Cancer Res. 1998;58:2076–7.

    PubMed  CAS  Google Scholar 

  14. Peters MA, Janer M, Kolb S, et al. Germline mutations in the p73 gene do not predispose to familial prostate-brain cancer. Prostate. 2001;48:292–6.

    Article  PubMed  CAS  Google Scholar 

  15. Li Q, Athan ES, Wei M, et al. TP73 allelic expression in human brain and allele frequencies in Alzheimer’s disease. BMC Med Genet. 2004;5:14.

    Article  PubMed  CAS  Google Scholar 

  16. Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1q36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997;90:809–19.

    Article  PubMed  CAS  Google Scholar 

  17. Hu Z, Miao X, Ma H, et al. Dinucleotide polymorphism of p73 gene is associated with a reduced risk of lung cancer in a Chinese population. Int J Cancer. 2005;114:455–60.

    Article  PubMed  CAS  Google Scholar 

  18. Hamajima N, Matsuo K, Suzuki T, et al. No association of p73 G4C14-to-A4T14 at exon 2 and p53 Arg72Pro polymorphism with the risk of digestive tract cancers in Japanese. Cancer Lett. 2002;181:81–5.

    Article  PubMed  CAS  Google Scholar 

  19. Hiraki A, Matsuo K, Hamajima N, et al. Different risk relations with smoking for non-small-cell lung cancer: comparison of TP53 and TP73 genotypes. Asian Pac J Cancer Prev. 2003;4:107–12.

    PubMed  Google Scholar 

  20. Huang XE, Hamajima N, Katsuda N, et al. Association of p53 codon Arg72Pro and p73 G4C14-to-A4T14 at exon 2 genetic polymorphisms with the risk of Japanese breast cancer. Breast Cancer. 2000;10:307–11.

    Article  Google Scholar 

  21. Niwa Y, Hirose K, Matsuo K, et al. Association of p73 G4C14-to-A4T14 polymorphism at exon 2 and p53 Arg72Pro polymorphism with the risk of endometrial cancer in Japanese subjects. Cancer Lett. 2005;219:183–90.

    Article  PubMed  CAS  Google Scholar 

  22. Li G, Sturgis EM, Wang LE, et al. Association of a p73 exon 2 G4C14-to-A4T14 polymorphism with risk of squamous cell carcinoma of the head and neck. Carcinogenesis. 2004;25:1911–6.

    Article  PubMed  CAS  Google Scholar 

  23. Kang S, Wang DJ, Li WS, et al. Association of p73 and MDM2 polymorphisms with the risk of epithelial ovarian cancer in Chinese women. Int J Gynecol Cancer. 2009;19:572–7.

    Article  PubMed  Google Scholar 

  24. Moll UM, Slade N. p63 and p73: roles in development and tumor formation. Mol Cancer Res. 2004;2:371–86.

    PubMed  CAS  Google Scholar 

  25. Pozniak CD, Radinovic S, Yang A, et al. An anti-apoptotic role of the p53 family member, p73, during developmental neuron death. Science. 2000;289:304–6.

    Article  PubMed  CAS  Google Scholar 

  26. Ozaki T, Nakagawara A. p73, a sophisticated p53 family member in the cancer world. Cancer Sci. 2005;96:729–37.

    Article  PubMed  CAS  Google Scholar 

  27. Arfaoui AT, Ben Mahmoud LK, Ben Hmida A, et al. Relationship between p73 polymorphism and the immunohistochemical profile of the full-length (TAp73) and NH2-truncated (ΔNp73) isoforms in Tunisian patients. Appl Immunohistochem Mol Morphol. 2010;18:546–54.

    Article  PubMed  CAS  Google Scholar 

  28. Li G, Wang LE, Chamberlain RM, et al. p73 G4C14-to-A4T14 polymorphism and risk of lung cancer. Cancer Res. 2004;64:6863–6.

    Article  PubMed  CAS  Google Scholar 

  29. Wang X, Zhang X, Qiu B, et al. MDM2 SNP309T > G polymorphism increases susceptibility to hepatitis B virus-related hepatocellular carcinoma in a northeast Han Chinese population. Liver Int. 2012;32:1172–8.

    Article  PubMed  CAS  Google Scholar 

  30. Li LM, Zeng XY, Ji L, et al. Association of XPC and XPG polymorphisms with the risk of hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 2010;18:271–5.

    PubMed  CAS  Google Scholar 

  31. Ryan BM, McManus R, Daly JS, et al. A common p73 polymorphism is associated with a reduced incidence of oesophageal carcinoma. Br J Cancer. 2001;85:1499–503.

    Article  PubMed  CAS  Google Scholar 

  32. Ge H, Wang YM, Cao YY, et al. The p73 polymorphisms are not associated with susceptibility to esophageal squamous cell carcinoma in a high incidence region of China. Dis Esophagus. 2007;20:290–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (no. 81172372 and no.30901720) and Ph.D. Programs Foundation of the Ministry of Education of China (no. 20090181120111).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, B., Liu, F., Wei, Y. et al. Association of a p73 exon 2 G4C14-to-A4T14 polymorphism with risk of hepatocellular carcinoma in a Chinese population. Tumor Biol. 34, 293–299 (2013). https://doi.org/10.1007/s13277-012-0550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0550-9

Keywords

Navigation