Skip to main content

Advertisement

Log in

Ubiquitination and the Ubiquitin–Proteasome System as regulators of transcription and transcription factorsin epithelial mesenchymal transition of cancer

  • Review
  • Published:
Tumor Biology

Abstract

Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin–Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nature Rev Mol Cell Biol. 2006;7:131–42.

    CAS  Google Scholar 

  2. Acloque H, Adams MS, Fishwick K, et al. Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119:1438–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Strieter ER, Korasick DA. Unraveling the complexity of ubiquitin signaling. ACS Chem Biol. 2012;7:52–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Behrends C, Harper JW. Constructing and decoding unconventional ubiquitin chains. Nat Struct Mol Biol. 2011;18:520–8.

    CAS  PubMed  Google Scholar 

  5. Shukla A, Chaurasia P, Bhaumik SR. Histone methylation and ubiquitination with their cross-talk and roles in gene expression and stability. Cell Mol Life Sci. 2009;66:1419–33.

    CAS  PubMed  Google Scholar 

  6. Kalluri R, Weinberg RA. The basics of epithelial–mesenchymal transition. J Clin Invest. 2009;119:1420–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Zeisberg M, Neilson EG. Biomarkers for epithelial–mesenchymal transitions. J Clin Invest. 2009;119:1429–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Mani SA, Guo W, Liao MJ, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Tarin D. The fallacy of epithelial–mesenchymal transition in neoplasia. Cancer Res. 2005;65:5996–6001.

    CAS  PubMed  Google Scholar 

  10. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  11. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial–mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15:117–34.

    PubMed Central  PubMed  Google Scholar 

  12. Harris TJC, Tepass U. Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol. 2010;11:502–14.

    CAS  PubMed  Google Scholar 

  13. Meng W, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol. 2009;1:a002899.

    PubMed Central  PubMed  Google Scholar 

  14. Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol. 2011;192:907–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Fujita Y, Krause G, Scheffner M, et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol. 2002;4:222–31.

    CAS  PubMed  Google Scholar 

  16. Palacios F, Tushir JS, Fujita Y, D’Souza-Schorey C (2005) Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell–cell adhesion during Epithelia to Mesenchymal Transitions. 25: 389–402

  17. Janda E, Nevolo M, Lehmann K, et al. Raf plus TGFβ-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene. 2006;25:7117–30.

    CAS  PubMed  Google Scholar 

  18. Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 2005;307:1603–9.

    CAS  PubMed  Google Scholar 

  19. Viloria-Petit AM, Wrana JL. The TGFβ–Par6 polarity pathway. Linking the Par complex to EMT and breast cancer progression. Cell Cycle. 2010;9:623–4.

    CAS  PubMed  Google Scholar 

  20. Voutsadakis IA (2010) Ubiquitin, ubiquitination and the ubiquitin–proteasome system in cancer. Atlas Genet Cytogen Oncol Haematol. URL:// Atlas GeneticsOncology.org/Deep/UbiquitinCancerID20083.httml

  21. Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signaling pathways. Nature Rev Mol Cell Biol. 2009;10:319–31.

    CAS  Google Scholar 

  22. van Wijk SJL, Timmers HTM. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 2010;24:981–93.

    PubMed  Google Scholar 

  23. Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399–434.

    CAS  PubMed  Google Scholar 

  24. Li W, Ye Y. Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci. 2008;65:2397–406.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 2004;1695:189–207.

    CAS  PubMed  Google Scholar 

  26. Voutsadakis IA. Pathogenesis of colorectal carcinoma and therapeutic implications: the roles of the ubiquitin–proteasome system and Cox-2. J Cell Mol Med. 2007;11:252–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta. 2004;1695:19–31.

    CAS  PubMed  Google Scholar 

  28. Wertz IE, Dixit VM. Signaling to NF-κB: regulation by ubiquitination. Cold Spring Harb Perspect Biol. 2010;2:a003350.

    PubMed Central  PubMed  Google Scholar 

  29. Wu Y, Zhou BP. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;102:639–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Min C, Eddy SF, Sherr DH, Sonenshein GE. NF-κB and epithelial to mesenchymal transition of cancer. J Cell Biochem. 2008;104:733–44.

    CAS  PubMed  Google Scholar 

  31. Pham CG, Bubici C, Zazzeroni F, et al. Upregulation of Twist-1 by NF-κB blocks cytotoxicity induced by chemotherapeutic drugs. Mol Cell Biol. 2007;27:3920–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Chua HL, Bhat-Nakshatri P, Clare SE, et al. NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene. 2007;26:711–24.

    CAS  PubMed  Google Scholar 

  33. Vonach C, Viola K, Giessrigl B, et al. NF-κB mediates the 12(S)-HETE-induced endothelial to mesenchymal transition of lymphendothelial cells during the intravasation of breast carcinoma cells. Br J Cancer. 2011;105:263–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Bachelder RE, Yoon S-O, Franci C, et al. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J Cell Biol. 2005;168:29–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Cheng GZ, Chan J, Wang Q, et al. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67:1979–87.

    CAS  PubMed  Google Scholar 

  36. Li J, Zhou BP. Activation of β-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer. 2011;11:49.

    PubMed Central  PubMed  Google Scholar 

  37. Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009;30:383–91.

    CAS  PubMed  Google Scholar 

  38. Landström M. The TAK1-TRAF6 signalling pathway. Int J Biochem Cell Biol. 2010;42:585–9.

    PubMed  Google Scholar 

  39. Espinosa L, Bigas A, Mulero MC. Alternative nuclear functions for NF-κB family members. Am J Cancer Res. 2011;1:446–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Dechend R, Hirano F, Lehmann K, et al. The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators. Oncogene. 1999;18:3316–23.

    CAS  PubMed  Google Scholar 

  41. Keutgens A, Shostak K, Close P, et al. The repressing function of the oncoprotein BCL-3 requires CtBP, while its polyubiquitination and degradation involve the E3 ligase TBLR1. Mol Cell Biol. 2010;30:4006–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Viatour P, Dejardin E, Warnier M, et al. GSK3-mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity. Mol Cell. 2004;16:35–45.

    CAS  PubMed  Google Scholar 

  43. Keutgens A, Zhou X, Shostak K, et al. BCL-3 degradation involves its polyubiquitination through a FBW7-independent pathway and its binding to the proteasome subunit PSMB1. J Biol Chem. 2010;285:25831–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Perissi V, Scafoglio C, Zhang J, et al. TBL1 and TBLR1 phosphorylation on regulated gene promoters overcomes dual CtBP and NCoR/SMRT transcriptional repression checkpoints. Mol Cell. 2008;29:755–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Haase VH. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int. 2009;76:492–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Kim WY, Perera S, Zhou B, et al. HIF2α cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest. 2009;119:2160–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Chen J, Imanaka N, Chen J, Griffin JD. Hypoxia potentiates Notch signalling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer. 2010;102:351–60.

    CAS  PubMed  Google Scholar 

  48. Xing F, Okuda H, Watabe M, et al. Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene. 2011;30:4075–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Scortegagna M, Martin RJ, Kladney RD, et al. Hypoxia-inducible factor-1α suppresses squamous carcinogenic progression and epithelial–mesenchymal transition. Cancer Res. 2009;69:2638–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Pantuck AJ, An J, Liu H, Rettig MB. NF-κB-dependent plasticity of the epithelial to mesenchymal transition induced by Von Hippel–Lindau inactivation in renal cell carcinomas. Cancer Res. 2010;70:752–61.

    CAS  PubMed  Google Scholar 

  51. Cowling VH, Cole MD. Mechanism of transcriptional activation by the Myc oncoproteins. Semin Cancer Biol. 2006;16:242–52.

    CAS  PubMed  Google Scholar 

  52. Yada M, Hatakeyama S, Kamura T, et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23:2116–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Yeh P-Y, Lu Y-S, Ou D-L, Cheng A-L. IκB kinases increase Myc protein stability and enhance progression of breast cancer cells. Mol Cancer. 2011;10:53.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Trimboli AJ, Fukino K, de Bruin A, et al. Direct evidence for epithelial–mesenchymal transitions in breast cancer. Cancer Res. 2008;68:937–45.

    CAS  PubMed  Google Scholar 

  55. Cho KB, Cho MK, Lee WY, Kang KW. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells. Cancer Lett. 2010;293:230–9.

    CAS  PubMed  Google Scholar 

  56. Smith AP, Verrecchia A, Fagà G, et al. A positive role for Myc in TGFβ-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene. 2009;28:422–30.

    CAS  PubMed  Google Scholar 

  57. Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biol. 2010;12:247–56.

    CAS  PubMed  Google Scholar 

  58. Khew-Goodall Y, Goodall GJ. Myc-modulated miR-9 makes more metastases. Nature Cell Biol. 2010;12:209–11.

    CAS  PubMed  Google Scholar 

  59. Turner DP, Watson DK. ETS transcription factors: oncogenes and tumor suppressor genes as therapeutic targets for prostate cancer. Expert Rev Anticancer Ther. 2008;8:33–42.

    CAS  PubMed  Google Scholar 

  60. Kovar H. Context matters: the hen or egg problem in Ewing’s sarcoma. Semin Cancer Biol. 2005;15:189–96.

    CAS  PubMed  Google Scholar 

  61. Gupta S, Iljin K, Sara H, et al. FZD4 as a mediator of ERG oncogene-induced WNT signalling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 2010;70:6735–45.

    CAS  PubMed  Google Scholar 

  62. Sun C, Dobi A, Mohamed A, et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene. 2008;27:5348–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Cowden Dahl KD, Dahl R, Kruichak JN, Hudson LG. The epidermal growth factor receptor responsive miR-125a represses mesenchymal morphology in ovarian cancer cells. Neoplasia. 2009;11:1208–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Takebe A, Era T, Okada M, et al. Microarray analysis of PDGFRα+ populations in ES cell differentiation culture identifies genes involved in differentiation of mesoderm and mesenchyme including ARID3b that is essential for development of embryonic mesenchymal cells. Dev Biol. 2006;293:25–37.

    CAS  PubMed  Google Scholar 

  65. Cowden Dahl KD, Zeineldin R, Hudson LG. PEA3 is necessary for optimal epidermal growth factor receptor-stimulated matrix metalloproteinase expression and invasion of ovarian tumor cells. Mol Cancer Res. 2007;5:413–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Yuen H-F, Chan Y-K, Grills C, et al. Polyomavirus enhancer activator 3 protein promotes breast cancer metastatic progression through Snail-induced epithelial–mesenchymal transition. J Pathol. 2011;224:78–89.

    CAS  PubMed  Google Scholar 

  67. Vitari AC, Leong KG, Newton K, et al. COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature. 2011;474:403–6.

    CAS  PubMed  Google Scholar 

  68. Vousden KH, Prives C. Blinded by the SteLight: the growing complexity of p53. Cell. 2009;137:413–31.

    CAS  PubMed  Google Scholar 

  69. Kashatus D, Cogwell P, Baldwin AS. Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes Dev. 2006;20:225–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Laine A, Ronai Z. Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene. 2007;26:1477–83.

    CAS  PubMed  Google Scholar 

  71. Miyazaki K, Ozaki T, Kato C, et al. A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem Biophys Res Commun. 2003;308:106–13.

    CAS  PubMed  Google Scholar 

  72. Melino G, Knight RA, Cesareni G. Degradation of p63 by Itch. Cell Cycle. 2006;5:1735–9.

    CAS  PubMed  Google Scholar 

  73. Dai C, Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med. 2010;16:528–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Masuya D, Huang C, Liu D, et al. The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J Pathol. 2006;208:724–32.

    CAS  PubMed  Google Scholar 

  75. Chang C-J, Chao C-H, Xia W, et al. p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biol. 2011;13:317.

    CAS  PubMed  Google Scholar 

  76. Kim T, Veronese A, Pichiorri F, et al. p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med. 2011;208:875–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Pinho AV, Rooman I, Real FX. p53-dependent regulation of growth, epithelial–mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle. 2011;10:1312–21.

    CAS  PubMed  Google Scholar 

  78. Wang S-P, Wang W-L, Chang Y-L, et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biol. 2009;11:694–704.

    CAS  PubMed  Google Scholar 

  79. Liu M, Casimiro MC, Wang C, et al. p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proc Natl Acad Sci USA. 2009;106:19035–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Zhang Y, Yan W, Chen X. Mutant p53 disrupts MCF-10A cell polarity in three-dimensional culture via epithelial-to-mesenchymal transitions. J Biol Chem. 2011;286:16218–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Kogan-Sakin I, Tabach Y, Buganim Y, et al. Mutant p53R175H upregulates Twist1 expression and promotes epithelial–mesenchymal transition in immortalized prostate cells. Cell Death Diff. 2011;18:271–81.

    CAS  Google Scholar 

  82. Ohashi S, Natsuizaka M, Wong GS, et al. Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Cancer Res. 2010;70:4174–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Girardini JE, Napoli M, Piazza S, et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell. 2011;20:79–91.

    CAS  PubMed  Google Scholar 

  84. Melino G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Diff. 2011;18:1487–99.

    CAS  Google Scholar 

  85. Weisz L, Damalas A, Liontos M, et al. Mutant p53 enhances nuclear factor κB activation by tumor necrosis factor α in cancer cells. Cancer Res. 2007;67:2396–401.

    CAS  PubMed  Google Scholar 

  86. Jiang Z, Jones R, Liu JC, et al. RB1 and p53 at the crossroad of EMT and triple-negative breast cancer. Cell Cycle. 2011;10:1563–70.

    CAS  PubMed  Google Scholar 

  87. Godar S, Ince TA, Bell GW, et al. Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell. 2008;134:62–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Gemmill RM, Roche J, Potiron VA, et al. ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett. 2011;300:66–78.

    CAS  PubMed  Google Scholar 

  89. De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signalling. 2005;17:535–47.

    PubMed  Google Scholar 

  90. Wang Z, Li Y, Kong D, et al. Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the Notch signaling pathway. Cancer Res. 2009;69:2400–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Bagnato A, Rosanò L. Epithelial–mesenchymal transition in ovarian cancer progression: a crucial role for the endothelin axis. Cells Tissues Organs. 2007;185:85–94.

    CAS  PubMed  Google Scholar 

  92. Yadav A, Kumar B, Datta J, et al. IL-6 promotes head and neck tumor metastasis by inducing epithelial–mesenchymal transition via the JAK–STAT3–SNAIL signaling pathway. Mol Cancer Res. 2011;9:1658–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Stemmer V, de Craene B, Berx G, Behrens J. Snail promotes Wnt target gene expression and interacts with β-catenin. Oncogene. 2008;27:5075–80.

    CAS  PubMed  Google Scholar 

  94. Vincent T, Neve EPA, Johnson JR, et al. A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition. Nature Cell Biol. 2009;11:943–50.

    CAS  PubMed  Google Scholar 

  95. Zhang L, Lei W, Wang X, et al. Glucocorticoid induces mesenchymal-to-epithelial transition and inhibits TGF-β1-induced epithelial-to-mesenchymal transition and cell migration. FEBS Lett. 2010;584:4646–54.

    CAS  PubMed  Google Scholar 

  96. Yook JI, Li X-Y, Ota I, et al. A Wnt-Axin2-GSK3β cascade regulates Snail1 activity in breast cancer cells. Nature Cell Biol. 2006;8:1398–14.

    CAS  PubMed  Google Scholar 

  97. Katoh M, Katoh M. Integrative genomic analyses of ZEB2: transcriptional regulation of ZEB2 based on SMADs, ETS1, HIF1α, POU/OCT, and NF-κB. Int J Oncol. 2009;34:1737–42.

    CAS  PubMed  Google Scholar 

  98. Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop-a motor of cellular plasticity in development and cancer? EMBO Rep. 2010;11:670–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Xia H, Ng SS, Jiang S, et al. miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun. 2010;391:535–41.

    CAS  PubMed  Google Scholar 

  100. Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biol. 2009;11:1487–95.

    CAS  PubMed  Google Scholar 

  101. Voutsadakis IA. Molecular predictors of gemcitabine response in pancreatic cancer. World J Gastrointest Oncol. 2011;3:153–64.

    PubMed Central  PubMed  Google Scholar 

  102. Fu J, Lv X, Lin H, et al. Ubiquitin ligase Cullin 7 induces epithelial–mesenchymal transition in human choriocarcinoma cells. J Biol Chem. 2010;285:10870–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.

    CAS  PubMed  Google Scholar 

  104. Burguignon LYW, Wong G, Earle C, et al. Hyaluronan–CD44 interaction promotes c-Src-mediated Twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J Biol Chem. 2010;285:36721–35.

    Google Scholar 

  105. Karlsson R, Pedersen ED, Wang Z, Brakebusch C. Rho GTPase function in tumorigenesis. Biochim Biophys Acta. 2009;1796:91–8.

    CAS  PubMed  Google Scholar 

  106. Sullivan NJ, Sasser AK, Axel AE, et al. Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28:2940–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Demontis S, Rigo C, Piccinin S, et al. Twist is substrate for caspase cleavage and proteasome-mediated degradation. Cell Death Diff. 2006;13:335–45.

    CAS  Google Scholar 

  108. Hwang-Verslues WW, Chang P-H, Wei P-C, et al. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene. 2011;30:2463–74.

    CAS  PubMed  Google Scholar 

  109. Sun L, Trausch-Azar JS, Ciechanover A, Schwartz AL. E2A protein degradation by the ubiquitin–proteasome system is stage-dependent during muscle differentiation. Oncogene. 2007;26:441–8.

    CAS  PubMed  Google Scholar 

  110. Sun L, Trausch-Azar JS, Ciechanover A, Schwartz AL. Ubiquitin–proteasome-mediated degradation, intracellular localization, and protein synthesis of MyoD and Id1 during muscle differentiation. J Biol Chem. 2005;280:26448–56.

    CAS  PubMed  Google Scholar 

  111. Bhat KP, Greer SF. Proteolytic and non-proteolytic roles of ubiquitin and the ubiquitin proteasome system in transcriptional regulation. Biochim Biophys Acta. 2011;1809:150–5.

    CAS  PubMed  Google Scholar 

  112. Jenster G, Spencer TE, Burcin MM, et al. Steroid receptor induction of gene transcription: a two-step model. Proc Natl Acad Sci USA. 1997;94:7879–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev. 2003;17:2733–40.

    CAS  PubMed  Google Scholar 

  114. Dover J, Schneider J, Tawiah-Boateng MA, et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem. 2002;277:28368–71.

    CAS  PubMed  Google Scholar 

  115. Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature. 2002;418:104–8.

    CAS  PubMed  Google Scholar 

  116. Higashi M, Inoue S, Ito T. Core histone H2A ubiquitylation and transcriptional regulation. Exp Cell Res. 2010;316:2707–12.

    CAS  PubMed  Google Scholar 

  117. Chandrasekharan MB, Huang F, Sun Z-W. Histone H2B ubiquitination and beyond. Epigenetics. 2010;5:460–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Laribee RN, Fuchs SM, Strahl BD. H2B ubiquitination in transcriptional control: a FACT-finding mission. Genes Dev. 2007;21:737–43.

    CAS  PubMed  Google Scholar 

  119. Ezhkova E, Tansey WP. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol Cell. 2004;13:435–42.

    CAS  PubMed  Google Scholar 

  120. Logan IR, Gaughan L, McCracken SRC, et al. Human PIRH2 enhances androgen receptor signalling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer. Mol Cell Biol. 2006;26:6502–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Boeger H, Bushnell DA, Davis R, et al. Structural basis of eukaryotic gene transcription. FEBS Lett. 2005;579:899–903.

    CAS  PubMed  Google Scholar 

  122. Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol Cell. 2004;14:667–73.

    CAS  PubMed  Google Scholar 

  123. Gaughan L, Logan IR, Neal DE, Robson CN. Regulation of androgen receptor and histone deacetylase 1 by mdm2-mediated ubiquitylation. Nucleic Acids Res. 2005;33:13–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Ramamoorthy S, Nawaz Z. E6-associated protein (E6-AP) is a dual function coactivator of steroid hormone receptors. Nucl Recept Signal. 2008;6:e006.

    PubMed Central  PubMed  Google Scholar 

  125. Vijayvargia R, May MS, Fondell JD. A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression. Cancer Res. 2007;67:4034–41.

    CAS  PubMed  Google Scholar 

  126. Conaway RC, Brower CS, Conaway JW. Emerging roles of ubiquitin in transcriptional regulation. Science. 2002;296:1254–8.

    CAS  PubMed  Google Scholar 

  127. Burgdorf S, Leister P, Scheidtmann KH. TSG101 interacts with apoptosis-antagonizing transcription factor and enhances androgen receptor-mediated transcription by promoting its monoubiquitination. J Biol Chem. 2004;279:17524–34.

    CAS  PubMed  Google Scholar 

  128. Kajiro M, Hirota R, Nakajima Y, et al. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat Cell Biol. 2009;11:312–9.

    CAS  PubMed  Google Scholar 

  129. Patterson C, Ronnebaum S. Breast cancer quality control. Nat Cell Biol. 2009;11:239–41.

    CAS  PubMed  Google Scholar 

  130. Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nature Rev Cancer. 2011;11:629–43.

    CAS  Google Scholar 

  131. Soucy TA, Dick LR, Smith PG, et al. The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer. 2010;1:708–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Kim S-E, Yoon J-Y, Jeong W-J, et al. H-Ras is degraded by Wnt/β-catenin signaling via β-TrCP-mediated polyubiquitination. J Cell Sci. 2009;122:842–8.

    CAS  PubMed  Google Scholar 

  133. Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nature Rev Cancer. 2008;8:438–49.

    CAS  Google Scholar 

  134. von der Lehr N, Johansson S, Wu S, et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell. 2003;11:1189–200.

    PubMed  Google Scholar 

  135. Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Rev Cancer. 2008;8:83–93.

    CAS  Google Scholar 

  136. O’Neal J, Grim J, Strack P, et al. (2005) FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med. 2007;204:1813–24.

    Google Scholar 

  137. Minella AC, Welcker M, Clurman BE. Ras activity regulates cyclin E degradation by the Fbw7 pathway. Proc Natl Acad Sci USA. 2005;102:9649–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Sarikas A, Xu X, Field LJ, Pan Z-Q. The cullin7 E3 ligase: a novel player in growth control. Cell Cycle. 2008;7:3154–61.

    CAS  PubMed  Google Scholar 

  139. Jung P, Verdoodt B, Bailey A, et al. Induction of cullin 7 by DNA damage attenuates p53 function. Proc Natl Acad Sci USA. 2007;104:11388–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Nikolaev AY, Li M, Puskas N, et al. Parc: a cytoplasmic anchor for p53. Cell. 2003;112:29–40.

    CAS  PubMed  Google Scholar 

  141. Kaelin Jr WG. The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nature Rev Cancer. 2008;8:865–73.

    CAS  Google Scholar 

  142. Harten SK, Shukla D, Barod R, et al. Regulation of renal epithelial tight junctions by the von Hippel–Lindau tumor suppressor gene involves occludin and claudin 1 and is independent of E-cadherin. Mol Biol Cell. 2009;20:1089–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Parant J, Chavez-Reyes A, Little NA, et al. Rescue of embryonic lethality in MDM4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nature. 2001;29:92–5.

    CAS  Google Scholar 

  144. Perry ME. The regulation of the p53-mediated stress response by MDM2 and MDM4. Cold Spring Harb Perspect Biol. 2010;2:a000968.

    PubMed Central  PubMed  Google Scholar 

  145. Marine J-C, Lozano G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Diff. 2010;17:93–102.

    CAS  Google Scholar 

  146. Barboza JA, Iwakuma T, Terzian T, et al. MDM2 and MDM4 loss regulates distinct p53 activities. Mol Cancer Res. 2008;6:947–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Manfredi JJ. The Mdm2–p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev. 2010;24:1580–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Araki S, Eitel JA, Batuello CN, et al. TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Invest. 2010;120:290–302.

    CAS  PubMed  Google Scholar 

  149. Ries S, Biederer C, Woods D, et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell. 2000;103:321–30.

    CAS  PubMed  Google Scholar 

  150. Phelps M, Darley M, Primrose JN, Blaydes JP. p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor α-positive breast cancer cells. Cancer Res. 2003;63:2616–23.

    CAS  PubMed  Google Scholar 

  151. Phelps M, Phillips A, Darley M, Blaydes JP. MEK–ERK signalling controls Hdm2 oncoprotein expression by regulating hdm2 mRNA export to the cytoplasm. J Biol Chem. 2005;280:16651–8.

    CAS  PubMed  Google Scholar 

  152. Cicalese A, Bonizzi G, Pasi CE, et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 2009;138:1083–95.

    CAS  PubMed  Google Scholar 

  153. Allende-Vega N, Saville MK. Targeting the ubiquitin–proteasome system to activate wild-type p53 for cancer therapy. Sem Cancer Biol. 2010;20:29–39.

    CAS  Google Scholar 

  154. Vassilev LT. MDM2 inhibitors for cancer therapy. Trends Mol Med. 2007;13:23–31.

    CAS  PubMed  Google Scholar 

  155. Zhuang C, Miao Z, Zhu L, et al. Synthesis and biological evaluation of thio-benzodiazepines as novel small molecule inhibitors of the p53–MDM2 protein–protein interaction. Eur J Med Chem. 2011;46:5654–61.

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis A. Voutsadakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voutsadakis, I.A. Ubiquitination and the Ubiquitin–Proteasome System as regulators of transcription and transcription factorsin epithelial mesenchymal transition of cancer. Tumor Biol. 33, 897–910 (2012). https://doi.org/10.1007/s13277-012-0355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0355-x

Keywords

Navigation