Skip to main content

Advertisement

Log in

CD133+ cells from medulloblastoma and PNET cell lines are more resistant to cyclopamine inhibition of the sonic hedgehog signaling pathway than CD133− cells

  • Research Article
  • Published:
Tumor Biology

Abstract

CD133 has recently been used as a reliable marker for brain tumor stem cells isolation. Sonic hedgehog (SHH) is implicated in medulloblastoma and central primitive neuroectodermal tumor (cPNET) formation. It has recently been suggested a role for the EWS/FLI1 fusion protein—typical of pPNET—in the upregulation of GLI1 and PTCH1 genes. Cyclopamine inhibits the SHH pathway in medulloblastoma cell lines, but its effect on cPNET and pPNET cell lines has not been well established yet. Our purpose was to study the effect of cyclopamine on medulloblastoma and PNET cell lines and to analyze whether CD133 expression might be able to modify this effect. We analyzed gene expression, cell viability, apoptosis, and tumorigenic capability before and after cyclopamine treatment in CD133 high-expressing and CD133 low-expressing cell lines. All medulloblastoma and PNET cell lines displayed an inhibitory effect on the expression of SHH pathway genes, on viability, and on tumorigenic potential after treatment. Nevertheless, CD133 expression made the cells more resistant to cyclopamine inhibition. These results open new doors to the understanding of CD133+ cancer stem cells as residual cells that might be responsible for treatment resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BTSC:

brain tumor stem cell

CNS:

central nervous system

cPNET:

central primitive neuroectodermal tumor

EGL:

external granular layer

GCP:

granule cell precursor

NSC:

neural stem cell

pPNET:

peripheral primitive neuroectodermal tumor

SHH:

sonic hedgehog

References

  1. Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N Engl J Med. 2005;353:811–22.

    Article  CAS  PubMed  Google Scholar 

  2. Wechsler-Reya R, Scott MP. The developmental biology of brain tumors. Annu Rev Neurosci. 2001;24:385–428.

    Article  CAS  PubMed  Google Scholar 

  3. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.

    Article  CAS  PubMed  Google Scholar 

  4. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  5. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 2005;8:323–35.

    Article  CAS  PubMed  Google Scholar 

  6. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  CAS  PubMed  Google Scholar 

  7. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of cd133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.

    Article  PubMed  Google Scholar 

  8. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, et al. Stem cell marker cd133 affects clinical outcome in glioma patients. Clin Cancer Res. 2008;14:123–9.

    Article  CAS  PubMed  Google Scholar 

  9. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    Article  PubMed  Google Scholar 

  10. Weiss WA. Genetics of brain tumors. Curr Opin Pediatr. 2000;12:543–8.

    Article  CAS  PubMed  Google Scholar 

  11. Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, et al. The Ewing family of tumors—a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med. 1994;331:294–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15:3059–87.

    Article  CAS  PubMed  Google Scholar 

  13. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425:962–7.

    Article  CAS  PubMed  Google Scholar 

  14. Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 2000;14:994–1004.

    CAS  PubMed  Google Scholar 

  15. Marino S. Medulloblastoma: developmental mechanisms out of control. Trends Mol Med. 2005;11:17–22.

    Article  CAS  PubMed  Google Scholar 

  16. Polkinghorn WR, Tarbell NJ. Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nat Clin Pract Oncol. 2007;4:295–304.

    Article  CAS  PubMed  Google Scholar 

  17. Zurawel RH, Allen C, Chiappa S, Cato W, Biegel J, Cogen P, et al. Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Gene Chromosomes Can. 2000;27:44–51.

    Article  CAS  Google Scholar 

  18. Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM, et al. Transcriptional profiling of the sonic hedgehog response: a critical role for n-myc in proliferation of neuronal precursors. Proc Natl Acad Sci U S A. 2003;100:7331–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kenney AM, Cole MD, Rowitch DH. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development. 2003;130:15–28.

    Article  CAS  PubMed  Google Scholar 

  20. Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M, et al. The sonic hedgehog-gli pathway regulates dorsal brain growth and tumorigenesis. Development. 2001;128:5201–12.

    CAS  PubMed  Google Scholar 

  21. Moriuchi S, Shimizu K, Miyao Y, Hayakawa T. An immunohistochemical analysis of medulloblastoma and pnet with emphasis on n-myc protein expression. Anticancer Res. 1996;16:2687–92.

    CAS  PubMed  Google Scholar 

  22. Vorechovsky I, Tingby O, Hartman M, Stromberg B, Nister M, Collins VP, et al. Somatic mutations in the human homologue of drosophila patched in primitive neuroectodermal tumours. Oncogene. 1997;15:361–6.

    Article  CAS  PubMed  Google Scholar 

  23. Wolter M, Reifenberger J, Sommer C, Ruzicka T, Reifenberger G. Mutations in the human homologue of the drosophila segment polarity gene patched (ptch) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 1997;57:2581–5.

    CAS  PubMed  Google Scholar 

  24. Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of hedgehog signaling by direct binding of cyclopamine to smoothened. Genes Dev. 2002;16:2743–8.

    Article  CAS  PubMed  Google Scholar 

  25. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science. 2002;297:1559–61.

    Article  CAS  PubMed  Google Scholar 

  26. Zwerner JP, Joo J, Warner KL, Christensen L, Hu-Lieskovan S, Triche TJ, et al. The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene. 2008;27:3282–91.

    Article  CAS  PubMed  Google Scholar 

  27. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. Hedgehog-gli1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17:165–72.

    Article  CAS  PubMed  Google Scholar 

  28. Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, et al. Inhibition of prostate cancer proliferation by interference with sonic hedgehog-gli1 signaling. Proc Natl Acad Sci U S A. 2004;101:12561–6.

    Article  CAS  PubMed  Google Scholar 

  29. Lauth M, Bergstrom A, Shimokawa T, Toftgard R. Inhibition of gli-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A. 2007;104:8455–60.

    Article  CAS  PubMed  Google Scholar 

  30. Qualtrough D, Buda A, Gaffield W, Williams AC, Paraskeva C. Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int J Cancer. 2004;110:831–7.

    Article  CAS  PubMed  Google Scholar 

  31. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.

    Article  CAS  PubMed  Google Scholar 

  32. Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene. 2004;23:7267–73.

    Article  CAS  PubMed  Google Scholar 

  33. Chuang PT, McMahon AP. Vertebrate hedgehog signalling modulated by induction of a hedgehog-binding protein. Nature. 1999;397:617–21.

    Article  CAS  PubMed  Google Scholar 

  34. Koch A, Waha A, Hartmann W, Milde U, Goodyer CG, Sorensen N, et al. No evidence for mutations or altered expression of the suppressor of fused gene (sufu) in primitive neuroectodermal tumours. Neuropathol Appl Neurobiol. 2004;30:532–9.

    Article  CAS  PubMed  Google Scholar 

  35. Bar EE, Stearns D. New developments in medulloblastoma treatment: the potential of a cyclopamine-lovastatin combination. Expert Opin Investig Drugs. 2008;17:185–95.

    Article  CAS  PubMed  Google Scholar 

  36. Carrillo J, Garcia-Aragoncillo E, Azorin D, Agra N, Sastre A, Gonzalez-Mediero I, et al. Cholecystokinin down-regulation by RNA interference impairs Ewing tumor growth. Clin Cancer Res. 2007;13:2429–40.

    Article  CAS  PubMed  Google Scholar 

  37. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359:162–5.

    Article  CAS  PubMed  Google Scholar 

  38. May WA, Lessnick SL, Braun BS, Klemsz M, Lewis BC, Lunsford LB, et al. The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol. 1993;13:7393–8.

    CAS  PubMed  Google Scholar 

  39. Yi H, Fujimura Y, Ouchida M, Prasad DD, Rao VN, Reddy ES. Inhibition of apoptosis by normal and aberrant Fli-1 and erg proteins involved in human solid tumors and leukemias. Oncogene. 1997;14:1259–68.

    Article  CAS  PubMed  Google Scholar 

  40. Capper D, Gaiser T, Hartmann C, Habel A, Mueller W, Herold-Mende C, et al. Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation. Acta Neuropathol. 2009;117:445–56.

    Article  CAS  PubMed  Google Scholar 

  41. Jin F, Zhao L, Guo YJ, Zhao WJ, Zhang H, Wang HT, Shao T, Zhang SL, Wei YJ, Feng J, Jiang XB, Zhao HY (2010) Influence of etoposide on anti-apoptotic and multidrug resistance-associated protein genes in cd133 positive u251 glioblastoma stem-like cells. Brain Res (in press)

  42. Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI, et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest. 2008;88:808–15.

    Article  CAS  PubMed  Google Scholar 

  43. Read TA, Fogarty MP, Markant SL, McLendon RE, Wei Z, Ellison DW, et al. Identification of cd15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell. 2009;15:135–47.

    Article  CAS  PubMed  Google Scholar 

  44. Ward RJ, Lee L, Graham K, Satkunendran T, Yoshikawa K, Ling E, et al. Multipotent cd15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res. 2009;69:4682–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M. Enguita-Germán and P. Schiapparelli thank the Asociación de Amigos de la Universidad de Navarra and the Departamento de Educación del Gobierno de Navarra for the fellowships received. J.S. Castresana thanks the Asociación Española de Pediatría for the VIII Premio Nutribén de Investigación Pediátrica and the Sociedad Española de Hematología y Oncología Pediátricas, Madrid. This research was supported in part by grants from the Departmento de Salud del Gobierno de Navarra (9/07), Caja Navarra (08/13912) and Fundación Universitaria de Navarra, Pamplona and Fondo de Investigación Sanitaria (PI081849), Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier S. Castresana.

Eelctronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enguita-Germán, M., Schiapparelli, P., Rey, J.A. et al. CD133+ cells from medulloblastoma and PNET cell lines are more resistant to cyclopamine inhibition of the sonic hedgehog signaling pathway than CD133− cells. Tumor Biol. 31, 381–390 (2010). https://doi.org/10.1007/s13277-010-0046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-010-0046-4

Keywords

Navigation