Skip to main content
Log in

Integrative toxicogenomics-based approach to risk assessment of heavy metal mixtures/complexes: strategies and challenges

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Human exposure to metallic elements ranging from single metal ionic salt, metal compounds, and metal mixtures that may occur naturally, as well as from human activities and industrial applications. Some metals including arsenic, cadmium, chromium, lead, mercury, and nickel in both single element and mixture forms render confounding health effects and ultimately cause cancer. Studies of heavy metal-mediated global aberration using non-targeted multiple toxicogenomic technologies might help to elucidate environmentally relevant disorders, as well as to monitor biomarker of exposure and predict the health risk toward environmental toxicants. We describe recent toxicogenomic studies on heavy metal mixtures as well as relevant mechanism of toxicity and molecular signatures. On the basis of system toxicology approach, integrative toxicogenomic and bioinformatic tools might represent the biological pathways linked to disorders. We also strongly suggest that the toxicogenomic data can be adopted to risk assessment process. Furthermore, we mention challenges in utility of toxicogenomic studies data to risk assessment process of toxicity of metal mixtures. Overall, we realize that application and interpretation of toxicogenomic data regarding to their strengths and weaknesses would potentiate chemical risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pepe, M. S. et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93:10541061 (2001).

    Article  Google Scholar 

  2. Rockett, J. C. Use of genomic data in risk assessment. Genome Biology 3:4011.1–4011.3 (2002).

    Article  Google Scholar 

  3. National Research Council/National Academy of Science (NRC/NAS). Applications of Toxicogenomic Technologies to Predictive Toxicology and Risk Assessment. National Academy Press, Washington, DC (2007a).

  4. National Research Council/National Academy of Science (NRC/NAS). Toxicity testing in the 21st Century: A Vision and a Strategy. National Academy Press, Washington, DC(2007b).

  5. Pennie, W., Pettit, S. D. & Lord, P G. Toxicogenomics in Risk Assessment: An Overview of an HESI Collaborative Research Program. Environmental Health Perspectives 112:417–419 (2004).

    Article  PubMed Central  PubMed  Google Scholar 

  6. Mumtaz, M. M. & Herzerg, R. C. in Hazard Assessment of Chemicals (ed Saxena, J.) 8:47–49 (Hemisphere Publishing Corporation, Washington, DC,1992).

    Google Scholar 

  7. Nordberg, G. F., Fowler, B. A. & Nordberg, M. Handbook on the Toxicology of Metals. Academic Press/Elsevier, USA (2005).

    Google Scholar 

  8. Ray, P D., Yosim, A. & Fry, R. C. Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Epigenetics in Metal Risk Assessment 5:1–26 (2014).

    CAS  Google Scholar 

  9. Andrew, A. S. et al. Genomic and proteomic profiling of responses to toxic metals in human lung cells. Environ Health Perspect 111:825–835 (2003).

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Rim, K. T. & Yu, I. J. Toxicogenomic Approach to Risk Assessment of Welding Fumes. J Clinic Toxicol 5:1–6 (2011).

    Google Scholar 

  11. Rim, K. T., Park, K. K., Sung, J. H., Chung, Y. H. & Han, J. H. Gene-expression profiling using suppression subtractive hybridization and cDNA microarray in rat mononuclear cells in response to welding-fume exposure. Toxicol Ind Health 20:77–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Hamerman, J. A., Jarjoura, J. R., Humphrey, M. B., Nakamura, M. C. & Seaman, W. E. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 177:2051–2055 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Heo, J. D., Oh, J. H., Lee, K., Kim, C. Y. & Song, C. W. Gene expression profiling in the lung tissue of cynomolgus monkeys in response to repeated exposure to welding fumes. Arch Toxicol 84:191–203 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Oh, J. H., Park, H. J., Heo, S. H., Yang, M. J. & Yang, Y. S. Gene expression analysis of lung injury in rats induced by exposure to MMA-SS welding fume for 30 days. Mol Cell Toxicol 3:306–313 (2007).

    Google Scholar 

  15. Recklies, A. D., Ling, H., White, C. & Bernier, S. M. Inflammatory cytokines induce production of CHI3L1 by articular chondrocytes. J Biol Chem 280:4121341221 (2005).

  16. Takeshita, F. & Ishii, K. J. Intracellular DNA sensors in immunity. Curr Opin Immunol 20:383–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Moubarak, R. S., Yuste, V. J., Artus, C., Bouharrour, A. & Greer, P. A. Sequential activation of poly (ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27:4844–4862 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Shen, R., Ouyang, Y. B., Qu, C. K., Alonso, A. & Sperzel, L. Grap negatively regulates T-cell receptor-elicited lymphocyte proliferation and interleukin-2 induction. Mol Cell Biol 22:3230–3236 (2002).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Heo, J. D., Oh, J. H., Lee, K., Song, C. W. & Yoon, S. Gene expression profiling in the lung from cynomolgus monkeys repeatedly exposed to welding fume. Toxicology Letters 189:93–94 (2009).

    Article  Google Scholar 

  20. Jonsson, L. S., Nielsen, J. & Broberg, K. Gene expression analysis in induced sputum from welders with and without airway-related symptoms. Int Arch Occup Environ Health 84:105–113 (2011).

    Article  PubMed  Google Scholar 

  21. Blanc, P. D., Boushey, H. A., Wong, H., Wintermeyer, S. F. & Bernstein, M. S. Cytokines in Metal Fume Fever. Am Rev Respir Dis 147:134–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Taylor, M. D., Roberts, J. R., Leonard, S. S., Shi, X. & Antonini, J. M. Effects of Welding Fumes of Differing Composition and Solubility on free Radical Production and Acute Lung Injury and Inflammation in Rats. Toxicol Sci 75:181–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. McNeilly, J. D., Heal, M. R., Beverland, I. J., Howe, A. & Gibson, M. D. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro. Toxicol Appl Pharmacol 196:95–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Donaldson, K., Tran, L., Jimenez, L. A., Duffin, R. & Newby, D. E. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10 (2005).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Wang, Z. et al. Prospective Study of Metal Fume-Induced Responses of Global Gene Expression Profiling in Whole Blood. Inhal Toxicol 20:1233–1244 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bodeker, W., Altenburger, R., Faust, M. & Grimme, L. H. Methods for the assessment of mixtures of pesticides: Mathematical analysis of combination effects in phytopharmacology and ecotoxicology. Nachrichtenbl Dtsch Pflanzenschutzdienstes (Braunschweig, Ger.) 42:70–78 (1990).

    Google Scholar 

  27. Altenburger, R., Nendza, M. & Schüürmann, G. Mixture toxicity and its modeling by quantitative structureactivity relationships. Environ Toxicol Chem 22:19001915 (2003).

    Article  Google Scholar 

  28. Kortenkamp, A., Backhaus, T. & Faust, F. State of the art report on mixture toxicity. Report to the European Commission. Web site: http://ec.europa.eu/environment/chemi cals/pdf/report_Mixture%20toxicity.pdf (accessed February 11, 2010).

    Google Scholar 

  29. Altenburger, R., Scholz, S., Schmitt-Jansen, M., Busch, W. & Escher, B. I. Mixture toxicity revisited from a toxicogenomic perspective. Environ Sci Technol 46:25082522 (2012).

    Article  Google Scholar 

  30. Choudhury, H. et al. Urinary cadmium elimination as a biomarker of exposure for evaluating a cadmium dietary exposure—biokinetics model. J Toxicol Environ Health A 63:321–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kjellström, T. & Nordberg, G. F. A kinetic model of cadmium metabolism in the human being. Environ Res 16:248–269 (1978).

  32. Nordberg, G. F. & Kjellström, T. Metabolic model for cadmium in man. Environ Health Perspect 28:211–217 (1979).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hook, S. E., Lampi, M. A., Febbo, E. J., Ward, J. A. & Pakerton, T. F. Hepatic gene expression in rainbow trout (Onchryhynchus mykiss) exposed to different hydrocarbon mixtures. Environ Toxicol Chem 29:20342043 (2010).

    Google Scholar 

  34. Williams, T. D., Gensberg, K., Minchin, S. D. & Chipman, J. K. A DNA expression array to detect toxic stress response in European flounder (Platichthys flesus). Aquat Toxicol 65:141–157 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Garcia-Reyero, N. et al. Assessment of chemical mixtures and groundwater effects on Daphnia magna transcriptomics. Environ Sci Technol 46:42–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Mortensen, A. S., Tolfsen, C. C. & Arukwe, A. Gene expression patterns in estrogen (nonylphenol) and aryl hydrocarbon receptor agonists (PCB-77) interaction using rainbow trout (Oncorhynchus mykiss) primary hepatocyte culture. J Toxicol Environ Health A 69:1–19 (2006).

    Article  PubMed  Google Scholar 

  37. Pinto, P. I. S. et al. ICI 182,780 has agonistic effects and synergizes with estradiol-17 beta in fish liver, but not in testis. Reprod Biol Endocrinol 4:67 (2006).

    Article  PubMed Central  PubMed  Google Scholar 

  38. Garcia-Reyero, N. et al. Gene expression responses in male fathead minnows exposed to binary mixtures of an estrogen and antiestrogen. BMC Genomics 10:308 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  39. Pomati, F. et al. Effects of a complex mixture of therapeutic drugs on human embryonic cells. Environ Sci Technol 40:2442–2447 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Krasnov, A., Afanasyev, S. & Oikari, A. Hepatic responses of gene expression in juvenile brown trout (Salmo trutta lacustris) exposed to three model contaminants applied singly or in combination. Environ Toxicol Chem 26:100–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Dardenne, F., Nobels, I., De Coen, W. & Blust, R. Mixture toxicity and gene induction: Can we predict the outcome? Environ Toxicol Chem 27:509–518 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Staal, Y. C. M. et al. Interactions between polycyclic aromatic hydrocarbons in binary mixtures: Effects on gene expression and DNA adduct formation in precision-cut rat liver slices. Mutagenesis 23:491–499 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Berenbaum, M. C. Criteria for analysing interactions between biologically active agents. Adv Cancer Res 35:269–335 (1981).

    Article  CAS  PubMed  Google Scholar 

  44. Agency for Toxic Substances and Disease Registry (ATSDR). in Guidance Manual for the Assessment of Joint Toxic Action of Chemical Mixtures (ATSDR, 2001).

  45. US.EPA. in Guidelines for the Health Risk Assessment of Chemical Mixtures (US.EPA, Washington, DC,1986).

  46. De Rosa, C. T., Hansen, H. & Wilbur, S. B. in Impact of Hazardous Chemical on public Health, Policy and Service 403-416 (International Toxicology Books, Princeton, NJ, 2002).

    Google Scholar 

  47. Mumtaz, M. & Durkin, P. R. A weight-of-evidence approach for assessing interactions in chemical mixtures. Toxicol Ind Health 8:377–406 (1992).

    CAS  PubMed  Google Scholar 

  48. Boverhof, D. R. & Gollapudi, B. B. in Applications of Toxicogenomics in Safety Evaluation and Risk Assessment (A John Wiley & Sons, Inc., USA, 2011).

    Book  Google Scholar 

  49. Fry, R. C. et al. Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers. PLoS Genet 3:e207 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  50. National Research Council (NRC). Arsenic in Drinking Water. Available online at: http://www.nap.edu/openbook.php?record_id=6444&page=177 (1999).

  51. Ho, S. M. et al. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J 53:289–305 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  52. Weis, B. K. et al. Personalized exposure assessment: promising approaches for human environmental health research. Environ Health Perspect 113:840–848 (2005).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Molidor, R., Sturn, A., Maurer, M. & Trajanoski, Z. New trends in bioinformatics: from genome sequence to personalized medicine. Exp Gerontol 38:1031–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Schwartz, D. A., Freedman, J. H. & Linney E. A. Environmental genomics: a key to understanding biology, pathophysiology and disease. Hum Mol Genet 13:R217–R224 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Rok Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koedrith, P., Kim, H.L. & Seo, Y.R. Integrative toxicogenomics-based approach to risk assessment of heavy metal mixtures/complexes: strategies and challenges. Mol. Cell. Toxicol. 11, 265–276 (2015). https://doi.org/10.1007/s13273-015-0026-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-015-0026-2

Keywords

Navigation