Skip to main content

Advertisement

Log in

Experimental study of two electro-mechanical de-icing systems applied on a wing section tested in an icing wind tunnel

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Two electro-mechanical de-icing systems are presented, which are applied to a test specimen consisting of a wing section with an NACA0012 profile. The test specimen is of a modular design to be able to substitute the leading edge section for investigating the different de-icing systems. The de-icing tests are performed in the icing wind tunnel of the Institute of Fluid Mechanics of the TU Braunschweig. The first de-icing concept is an electro-mechanical system based on structural vibrations of the unstiffened sections. Due to piezoceramic actuators and their positions, the skin is excited at its natural frequency. The actuators are placed at the inner side of the leading edge. The second system under investigation is the Electro-Impulse De-Icing concept. Coils placed underneath the upper and lower aluminum skin are supplied with short, high-current impulses which produce opposing time-dependent magnetic fields around coil and skin. The resulting magnetic forces repel the structure which leads to a damped oscillation of the skin. The first aim of this work is to investigate the performance of the two electro-mechanical de-icing systems under various icing conditions. Operational parameters like temperature and liquid water content are varied. The test results show that the de-icing performance of both systems mainly depends on the ice layer thickness and the environmental temperature. The second aim of this work is to investigate the de-icing mechanism of the accumulated ice. Therefore, the de-icing procedure is recorded with a high-speed camera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

LWC:

Liquid water content (g/m3)

MVD:

Medium volume diameter (µm)

t :

Icing time (min)

T :

Temperature (°C)

v :

Flow velocity (m/s)

α :

Angle of attack (°)

EIDI:

Electro-Impulse De-Icing

FRF:

Frequency response function

CFRP:

Carbon fiber-reinforced plastic

GFRP:

Glass fiber-reinforced plastic

LFDI:

Low-Frequency De-Icing

References

  1. Shah, A.D.: Integrated thermal anti-icing and environmental control, US3981466 A. US Patent, English (1976)

  2. Botura, G.C., Sweet, D., Flosdorf, D.: Development and demonstration of low power electrothermal de-icing system, Reno, NV: 43rd AIAA Aerospace Sciences Meeting and Exhibition (2005). doi:10.2514/6.2005-1460

  3. Kohlman, D., Schweikhard, W., Evanich, P.: Icing tunnel tests of a glycol-exuding porous leading edge ice protection system. J Aircr (1982). doi:10.2514/3.57445

  4. Heinrich, A., Ross, R., Zumwalt, G., Provorse, J., Padmanabhan, V., Thompson, J., Riley, J.: Section 3.0 fluid ice protection systems, US Department of Transportation, FAA (1991)

  5. Albright A.: A summary of NASA’s research on the fluid ice protection system, 23rd Aerospace Sciences Meeting ed., Reno, Nevada, AIAA (1985)

  6. Heinrich, A., Ross, R., Zumwalt, G., Provorse, J., Padmanabhan, V., Thompson, J., Riley, J.: Section 1.0 conventional pneumatic boot deicing systems. US Department of Transportation, FAA (1991)

  7. Shin, J., Bond, T.H., Mesander, G.A.: Results of a low power ice protection system test and a new method of imaging data analysis. National Aeronautics and Space Administration (1992)

  8. Sweet, D.: Understanding pneumatic de-icing, Goodrich, Charlotte (2011)

  9. Zumwalt, G.W., Schrag, R.L., Bernhart, W.D., Friedberg, R.A.: Electro-impulse de-icing testing analysis and design, NASA CR-4175, NASA, USA (1988)

  10. Henderson, R.A., Schrag, R.L.: Theoretical analysis of electrical aspects of the basic electro-impulse problem in aircraft de-icing applications. NASA CR-180845, NASA, USA (1987)

  11. Zhu, Y., Palacios, J.L., Rose, J.L., Smith, E.C.: De-icing of multi-layer composite plates using ultrasonic guided waves. In: Proceedings of the 49th structural dynamics and materials conference, 2008. doi:10.2514/6.2008-1862

  12. Palacios, J., Smith, E., Rose, J.: Instantaneous de-icing of freezer ice via ultrasonic actuation, 49 ed., AIAA J (2011). doi:10.2514/1.J050143

  13. DiPlacido, N., Soltis, J., Palacios, J.: Enhancement of ultrasonic de-icing via tone burst excitation. J Aircr (2016). doi:10.2514/1.C033761

    Google Scholar 

  14. Venna, S.V., Lin, Y.-J., Botura, G.: Piezoelectric transducer actuated leading edge de-icing with simultaneous shear and impulse forces. J Aircr (2007). doi:10.2514/1.23996

    Google Scholar 

  15. Habibi, H., Edwards, G., Cheng, L., Zheng, H., et al.: Developing a novel ice protection system for wind turbine. SAE Int (2015). doi:10.4271/2015-01-2081

    Google Scholar 

  16. Villeneuve, E., Harvey, D., Zimcik, D., Aubert, R., Perron, J.: Piezoelectric de-icing system for rotorcraft. J Am Helicopter Soc (2015). doi:10.4050/JAHS.60.042001

    Google Scholar 

  17. Behr, C., Lippmann, F., Wierach, P., Sinapius, M.: Tailored multilayer stack actuators for harsh environment. 7th ECCOMAS Thematic Conference on Smart Structures and Materials (2015)

  18. Sommerwerk, H., Horst, P., Bansmer, S.: Studies on electro impulse de-icing of a leading edge structure in an icing wind tunnel. 8th AIAA atmospheric and space environments conference, Washington, DC, June 2016. doi:10.2514/6.2016-3441

  19. Gent, R.W., Dart, N.P., Cansdale, J.T.: Aircraft icing. Philos Trans R Soc A 358(1776), 2873–2911 (2000). doi:10.1098/rsta.2000.0689

    Article  MATH  Google Scholar 

  20. Jellinek, H.H.G.: Adhesive properties of ice. J Colloid Sci 14(3), S268–S280 (1959). doi:10.1016/0095-8522(59)90051-0

    Article  Google Scholar 

  21. Dong, W., Ding, J., Zhou, Z.X.: Experimental study on the ice freezing adhesive characteristics of metal surfaces. J Aircr 51(3), 719–726 (2014). doi:10.2514/1.C032393

    Article  Google Scholar 

  22. Andrews, E.H., Lockington, N.A.: The cohesive and adhesive strength of ice. J Mater Sci 18(5), 1455–1465 (1983)

    Article  Google Scholar 

  23. Gao, H., Rose, J.L.: Ice detection and classification on an aircraft wing with ultrasonic shear horizontal guided waves. IEEE Trans Ultrason Ferroelectr Freq Control 56(2), 334–344 (2009). doi:10.1109/TUFFC.2009.1042

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Institute of Fluid Mechanics of the Technical University Braunschweig Icing Wind Tunnel staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Endres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endres, M., Sommerwerk, H., Mendig, C. et al. Experimental study of two electro-mechanical de-icing systems applied on a wing section tested in an icing wind tunnel. CEAS Aeronaut J 8, 429–439 (2017). https://doi.org/10.1007/s13272-017-0249-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-017-0249-0

Keywords

Navigation