Skip to main content
Log in

Guanine nucleotide-binding protein 2, GNBP2, accelerates the progression of clear cell renal cell carcinoma via regulation of STAT3 signaling transduction pathway

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Guanine nucleotide-binding protein 2 (GNBP2) is a GTPase that has critical roles in host immunity and some types of cancer, but its function in clear cell renal cell carcinoma (ccRCC) is not fully understood.

Objective

This work explored the role of GNBP2 in ccRCC progression and the underlying molecular mechanism.

Methods

Two public human cancer databases TNMplot and TISIDB were employed to analyze the expression pattern of GNBP2 during ccRCC progression and the correlation between GNBP2 expression and clinical features of ccRCC patients. GNBP2 functions in ccRCC cells were determined by EdU staining, flow cytometry, scratch wound assay, transwell assay, and xenograft model. Gene expression was evaluated using qPCR, Western blot, immunofluorescence staining, and immunohistochemical staining.

Results

GNBP2 expression was significantly elevated in ccRCC tissues and increased gradually with the increasing tumor grades. Patients with higher GNBP2 expression had shorter overall survival times. Knockdown of GNBP2 suppressed tumor cell proliferation and cell cycle progression and reduced the capability of migration and invasion, while GNBP2 overexpression exhibited protumor effects. GNBP2 silencing by RNA interference significantly inhibited the tumor growth of tumor-bearing nude mice and decreased the proliferation marker Ki67. Mechanistically, GNBP2 downregulation suppressed the STAT3 signaling transduction, as it reduced the phosphorylation of STAT3 and modulated the expression of the target genes, including c-Myc, MMP2, N-cadherin, and E-cadherin.

Conclusion

These findings reveal that GNBP2 promotes ccRCC progression by regulating STAT3 signaling transduction, indicating that GNBP2 might be a promising molecular target for ccRCC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Abdullah N, Balakumari M, Sau AK (2010) Dimerization and its role in GMP formation by human guanylate binding proteins. Biophys J 99:2235–2244

    Article  CAS  Google Scholar 

  • Balasubramanian S, Nada S, Vestal D (2006) The interferon-induced GTPase, mGBP-2, confers resistance to paclitaxel-induced cytotoxicity without inhibiting multinucleation. Cell Mol Biol (noisy-Le-Grand) 52:43–49

    CAS  Google Scholar 

  • Bartha Á, Győrffy B (2021) TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int J Mol Sci 22:2622

    Article  CAS  Google Scholar 

  • Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ (2020) Targeting janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: rationale, progress, and caution. Pharmacol Rev 72:486–526

    Article  CAS  Google Scholar 

  • Boehm U, Guethlein L, Klamp T, Ozbek K, Schaub A, Fütterer A, Pfeffer K, Howard JC (1998) Two families of GTPases dominate the complex cellular response to IFN-gamma. J Immunol 161:6715–6723

    Article  CAS  Google Scholar 

  • Brenner W, Gross S, Steinbach F, Horn S, Hohenfellner R, Thüroff JW (2000) Differential inhibition of renal cancer cell invasion mediated by fibronectin, collagen IV and laminin. Cancer Lett 155:199–205

    Article  CAS  Google Scholar 

  • Chae IG, Song NY, Kim DH, Lee MY, Park JM, Chun KS (2020) Thymoquinone induces apoptosis of human renal carcinoma Caki-1 cells by inhibiting JAK2/STAT3 through pro-oxidant effect. Food Chem Toxicol 139:111253

    Article  CAS  Google Scholar 

  • Cheng YS, Colonno RJ, Yin FH (1983) Interferon induction of fibroblast proteins with guanylate binding activity. J Biol Chem 258:7746–7750

    Article  CAS  Google Scholar 

  • Cuadros T, Trilla E, Sarró E, Vilà MR, Vilardell J, de Torres I, Salcedo M, López-Hellin J, Sánchez A, Ramón y Cajal S et al (2014) HAVCR/KIM-1 activates the IL-6/STAT-3 pathway in clear cell renal cell carcinoma and determines tumor progression and patient outcome. Cancer Res 74:1416–1428

    Article  CAS  Google Scholar 

  • Cui W, Braun E, Wang W, Tang J, Zheng Y, Slater B, Li N, Chen C, Liu Q, Wang B et al (2021) Structural basis for GTP-induced dimerization and antiviral function of guanylate-binding proteins. Proc Natl Acad Sci USA 118(15):e2022269118. https://doi.org/10.1073/pnas.2022269118

    Article  CAS  Google Scholar 

  • Du P, Zeng H, Xiao Y, Zhao Y, Zheng B, Deng Y, Liu J, Huang B, Zhang X, Yang K et al (2020) Chronic stress promotes EMT-mediated metastasis through activation of STAT3 signaling pathway by miR-337-3p in breast cancer. Cell Death Dis 11:761

    Article  CAS  Google Scholar 

  • Gavet O, Pines J (2010) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18:533–543

    Article  CAS  Google Scholar 

  • Godoy P, Cadenas C, Hellwig B, Marchan R, Stewart J, Reif R, Lohr M, Gehrmann M, Rahnenführer J, Schmidt M et al (2014) Interferon-inducible guanylate binding protein (GBP2) is associated with better prognosis in breast cancer and indicates an efficient T cell response. Breast Cancer 21:491–499

    Article  Google Scholar 

  • Gorbacheva VY, Lindner D, Sen GC, Vestal DJ (2002) The interferon (IFN)-induced GTPase, mGBP-2. Role in IFN-gamma-induced murine fibroblast proliferation. J Biol Chem 277:6080–6087

    Article  CAS  Google Scholar 

  • Guimarães DP, Oliveira IM, de Moraes E, Paiva GR, Souza DM, Barnas C, Olmedo DB, Pinto CE, Faria PA, De Moura Gallo CV et al (2009) Interferon-inducible guanylate binding protein (GBP)-2: a novel p53-regulated tumor marker in esophageal squamous cell carcinomas. Int J Cancer 124:272–279

    Article  Google Scholar 

  • Hagiwara H, Sato H, Ohde Y, Takano Y, Seki T, Ariga T, Hokaiwado N, Asamoto M, Shirai T, Nagashima Y et al (2008) 5-Aza-2’-deoxycytidine suppresses human renal carcinoma cell growth in a xenograft model via up-regulation of the connexin 32 gene. Br J Pharmacol 153:1373–1381

    Article  CAS  Google Scholar 

  • Han Y, Amin HM, Franko B, Frantz C, Shi X, Lai R (2006) Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood 108:2796–2803

    Article  CAS  Google Scholar 

  • Horiguchi A, Asano T, Kuroda K, Sato A, Asakuma J, Ito K, Hayakawa M, Sumitomo M, Asano T (2010) STAT3 inhibitor WP1066 as a novel therapeutic agent for renal cell carcinoma. Br J Cancer 102:1592–1599

    Article  CAS  Google Scholar 

  • Jonasch E, Gao J, Rathmell WK (2014) Renal cell carcinoma. BMJ 349:g4797

    Article  Google Scholar 

  • Jonasch E, Walker CL, Rathmell WK (2021) Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol 17:245–261

    Article  CAS  Google Scholar 

  • Li P, Jiang W, Yu Q, Liu W, Zhou P, Li J, Xu J, Xu B, Wang F, Shao F (2017) Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature 551:378–383

    Article  CAS  Google Scholar 

  • Li YL, Wu LW, Zeng LH, Zhang ZY, Wang W, Zhang C, Lin NM (2020) ApoC1 promotes the metastasis of clear cell renal cell carcinoma via activation of STAT3. Oncogene 39:6203–6217

    Article  CAS  Google Scholar 

  • Liang Q, Ma D, Zhu X, Wang Z, Sun TT, Shen C, Yan T, Tian X, Yu T, Guo F et al (2018) RING-finger protein 6 amplification activates JAK/STAT3 pathway by modifying SHP-1 ubiquitylation and associates with poor outcome in colorectal cancer. Clin Cancer Res 24:1473–1485

    Article  CAS  Google Scholar 

  • Lin X, Rice KL, Buzzai M, Hexner E, Costa FF, Kilpivaara O, Mullally A, Soares MB, Ebert BL, Levine R et al (2013) miR-433 is aberrantly expressed in myeloproliferative neoplasms and suppresses hematopoietic cell growth and differentiation. Leukemia 27:344–352

    Article  CAS  Google Scholar 

  • Liu Y, Wang JX, Nie ZY, Wen Y, Jia XJ, Zhang LN, Duan HJ, Shi YH (2019) Upregulation of ERp57 promotes clear cell renal cell carcinoma progression by initiating a STAT3/ILF3 feedback loop. J Exp Clin Cancer Res 38:439

    Article  CAS  Google Scholar 

  • Liu J, Peng Y, Wei W (2022) Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol 32:30–44

    Article  CAS  Google Scholar 

  • Mo M, Tong S, Yin H, Jin Z, Zu X, Hu X (2020) SHCBP1 regulates STAT3/c-Myc signaling activation to promote tumor progression in penile cancer. Am J Cancer Res 10:3138–3156

    CAS  Google Scholar 

  • Pan XW, Chen L, Hong Y, Xu DF, Liu X, Li L, Huang Y, Cui LM, Gan SS, Yang QW et al (2016) EIF3D silencing suppresses renal cell carcinoma tumorigenesis via inducing G2/M arrest through downregulation of Cyclin B1/CDK1 signaling. Int J Oncol 48:2580–2590

    Article  CAS  Google Scholar 

  • Park WH, Jung CW, Park JO, Kim K, Kim WS, Im YH, Lee MH, Kang WK, Park K (2003) Monensin inhibits the growth of renal cell carcinoma cells via cell cycle arrest or apoptosis. Int J Oncol 22:855–860

    CAS  Google Scholar 

  • Ren Y, Yang B, Guo G, Zhang J, Sun Y, Liu D, Guo S, Wu Y, Wang X, Wang S et al (2022) GBP2 facilitates the progression of glioma via regulation of KIF22/EGFR signaling. Cell Death Discov 8:208

    Article  CAS  Google Scholar 

  • Rodrigues S, Attoub S, Nguyen QD, Bruyneel E, Rodrigue CM, Westley BR, May FE, Thim L, Mareel M, Emami S et al (2003) Selective abrogation of the proinvasive activity of the trefoil peptides pS2 and spasmolytic polypeptide by disruption of the EGF receptor signaling pathways in kidney and colonic cancer cells. Oncogene 22:4488–4497

    Article  CAS  Google Scholar 

  • Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, Chu KC, Wong CY, Lau CY, Chen I et al (2019) TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics 35:4200–4202

    Article  CAS  Google Scholar 

  • Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23:9408–9421

    Article  CAS  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33

    Article  Google Scholar 

  • Tetsuo F, Arioka M, Miura K, Kai M, Kubo M, Igawa K, Tomooka K, Takahashi-Yanaga F, Nishimura F, Sasaguri T (2019) Differentiation-inducing factor-1 suppresses cyclin D1-induced cell proliferation of MCF-7 breast cancer cells by inhibiting S6K-mediated signal transducer and activator of transcription 3 synthesis. Cancer Sci 110:3761–3772

    Article  CAS  Google Scholar 

  • Turajlic S, Swanton C, Boshoff C (2018) Kidney cancer: The next decade. J Exp Med 215:2477–2479

    Article  CAS  Google Scholar 

  • Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB, Wouters A et al (2020) The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol 60:41–56

    Article  CAS  Google Scholar 

  • Wang A, Bao Y, Wu Z, Zhao T, Wang D, Shi J, Liu B, Sun S, Yang F, Wang L et al (2019) Long noncoding RNA EGFR-AS1 promotes cell growth and metastasis via affecting HuR mediated mRNA stability of EGFR in renal cancer. Cell Death Dis 10:154

    Article  Google Scholar 

  • Wang J, Min H, Hu B, Xue X, Liu Y (2020) Guanylate-binding protein-2 inhibits colorectal cancer cell growth and increases the sensitivity to paclitaxel of paclitaxel-resistant colorectal cancer cells by interfering Wnt signaling. J Cell Biochem 121:1250–1259

    Article  CAS  Google Scholar 

  • Wang H, Zhou Y, Zhang Y, Fang S, Zhang M, Li H, Xu F, Liu L, Liu J, Zhao Q et al (2022) Subtyping of microsatellite stability colorectal cancer reveals guanylate binding protein 2 (GBP2) as a potential immunotherapeutic target. J Immunother Cancer 10:e004302

    Article  Google Scholar 

  • Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, Huang S (2004) Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 23:3550–3560

    Article  CAS  Google Scholar 

  • Yamada Y, Sugawara S, Arai T, Kojima S, Kato M, Okato A, Yamazaki K, Naya Y, Ichikawa T, Seki N (2018) Molecular pathogenesis of renal cell carcinoma: impact of the anti-tumor miR-29 family on gene regulation. Int J Urol 25:953–965

    Article  CAS  Google Scholar 

  • Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14:736–746

    Article  CAS  Google Scholar 

  • Yu S, Yu X, Sun L, Zheng Y, Chen L, Xu H, Jin J, Lan Q, Chen CC, Li M (2020) GBP2 enhances glioblastoma invasion through Stat3/fibronectin pathway. Oncogene 39:5042–5055

    Article  CAS  Google Scholar 

  • Zhang J, Zhang Y, Wu W, Wang F, Liu X, Shui G, Nie C (2017) Guanylate-binding protein 2 regulates Drp1-mediated mitochondrial fission to suppress breast cancer cell invasion. Cell Death Dis 8:e3151

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the fund of Department of Education of Liaoning Province (205180016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Tong.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethics statement

This study does not contain any study with human subjects. Animal experiments were approved by the Ethics Committee of Jinzhou Medical University and were performed following ARRIVE guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Ma, J., Li, W. et al. Guanine nucleotide-binding protein 2, GNBP2, accelerates the progression of clear cell renal cell carcinoma via regulation of STAT3 signaling transduction pathway. Genes Genom 45, 1–11 (2023). https://doi.org/10.1007/s13258-022-01334-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-022-01334-w

Keywords

Navigation