Skip to main content
Log in

Identification of differentially expressed miRNAs after Lactobacillus reuteri treatment in the ileum mucosa of piglets

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Lactobacillus reuteri I5007 possesses many excellent probiotic characteristics in piglets. miRNA plays important role in host-microbiota interactions, but the mechanism by which L. reuteri I5007 regulates intestinal function through its influence on miRNA expression is unknown.

Objective

This study analyzed the miRNA expression patterns in the ileum mucosa tissue of piglets by L. reuteri I5007 treatment, aim to clarify its molecular mechanism for regulating intestinal function through miRNA.

Methods

Neonatal piglets were orally administered L. reuteri I5007 or a placebo daily starting on day 1, and differential expression of ileal miRNAs was analyzed at 10 and 20 days of age by small RNA sequencing.

Results

361 known porcine miRNAs were identified, and ten miRNAs were highly expressed in the ileum mucosa in both treatments. Nineteen differentially expressed (DE) miRNAs were identified in response to L. reuteri treatment, and four DE miRNAs (ssc-miR-196a, -196b-5p, -1285 and -10386) were differentially expressed at both time points. The KEGG pathway analyses showed the targets of 19 DE miRNAs were involved in 63 significantly enriched pathways, including the PI3K-Akt and MAPK pathways, which were confirmed to play important roles in probiotic-host communication. L. reuteri I5007 exerted anti-inflammatory effects by influencing the levels of inflammatory cytokines. Suppressor of cytokine signalling 4 gene was the target gene of ssc-miR-196a/-196b-5p, overexpression of ssc-miR-196a/-196b-5p downregulated the mRNA expression of IL-1β and TNFα in IPEC-J2 cells.

Conclusion

Our study provides new insight into the role of miRNAs in the intestinal function of piglets after L. reuteri I5007 treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005

    Article  PubMed Central  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gomez-Llorente C, Gil A (2012) Probiotic mechanisms of action. Ann Nutr Metab 61:160–174

    Article  CAS  PubMed  Google Scholar 

  • Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V, Mari B, Barbry P, Mosnier JF, Hebuterne X et al (2011) A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet 43:242–245

    Article  CAS  PubMed  Google Scholar 

  • Cai SD, Chen JS, Xi ZW, Zhang LJ, Niu ML, Gao ZY (2015) MicroRNA144 inhibits migration and proliferation in rectal cancer by downregulating ROCK1. Mol Med Rep 12:7396–7402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celluzzi A, Masotti A (2016) Interplays between gut microbiota and gene expression regulation by miRNAs: towards a symbiotic vision of host and guest. In: Leitão A, Enguita F (eds) Non-coding RNAs and Inter-kingdom Communication. Springer, Cham, pp 53–65

  • Dong M, Xie Y, Xu Y (2019) miR-7-5p regulates the proliferation and migration of colorectal cancer cells by negatively regulating the expression of Kruppel-like factor 4. Oncol Lett 17:3241–3246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  • Gao K, Liu L, Dou X, Wang C, Liu J, Zhang W, Wang H (2016) Doses Lactobacillus reuteri depend on adhesive ability to modulate the intestinal immune response and metabolism in mice challenged with lipopolysaccharide. Sci Rep 6:28332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Xu L, Teng X, Sun M (2017) MicroRNA-7-5p regulates the proliferation and migration of intestinal epithelial cells by targeting trefoil factor 3 via inhibiting the phosphoinositide 3-kinase/Akt signalling pathway. Int J Mol Med 40:1435–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasáková K, Bezakova J, Vician M, Reis R, Zeman M, Herichova I (2017) Gender-dependent expression of leading and passenger strand of miR-21 and miR-16 in human colorectal cancer and adjacent colonic tissues. Physiol Res 66:S575–S582

    Article  PubMed  Google Scholar 

  • Hoeke L, Sharbati J, Pawar K, Keller A, Einspanier R, Sharbati S (2013) Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS One 8:e67300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou C, Wang Q, Zeng X, Yang F, Zhang J, Liu H, Ma X, Qiao S (2014) Complete genome sequence of Lactobacillus reuteri I5007, a probiotic strain isolated from healthy piglet. J Biotechnol 179:63–64

    Article  CAS  PubMed  Google Scholar 

  • Hou C, Zeng X, Yang F, Liu H, Qiao S (2015) Study and use of the probiotic Lactobacillus reuteri in pigs: a review. J Anim Sci Biotechnol 6:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou Q, Huang Y, Zhu S, Li P, Chen X, Hou Z, Liu F (2017) MiR-144 increases intestinal permeability in IBS-D rats by targeting OCLN and ZO1. Cell Physiol Biochem 44:2256–2268

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Zhou R, Liu J, Gong AY, Chen XM (2010) MicroRNA-98 and let-7 regulate expression of suppressor of cytokine signaling 4 in biliary epithelial cells in response to Cryptosporidium parvum infection. J Infect Dis 202:125–135

    Article  CAS  PubMed  Google Scholar 

  • Huang CH, Qiao SY, Li DF, Piao XS, Ren JP (2004) Effects of Lactobacilli on the performance, ddiarrhea incidence, VFA concentration and gastrointestinal microbial flora of weaning pigs. Australas J Anim Sci 17:401–409

    Article  Google Scholar 

  • James CC, John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA Targets. PLoS Biol 2:e363

    Article  CAS  Google Scholar 

  • Jiang S, Li X, Wang X, Ban Q, Hui W, Jia B (2016) MicroRNA profiling of the intestinal tissue of Kazakh sheep after experimental Echinococcus granulosus infection, using a high-throughput approach. Parasite 23:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Gu S, Liu D, Zhao L, Xia S, He X, Chen H, Ge J (2018) Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-kappaB signaling cascades. Front Microbiol 9:2425

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang S, Fang X, Liu M, Ni Y, Ma W, Zhao R (2019) MiR-20b down-regulates intestinal ferroportin expression in vitro and in vivo. Cells 8:1135

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T et al (2007) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kou Y, Qiao L, Wang Q (2015) Identification of core miRNA based on small RNA-seq and RNA-seq for colorectal cancer by bioinformatics. Tumour Biol 36:2249–2255

    Article  CAS  PubMed  Google Scholar 

  • Kreuzer-Redmer S, Bekurtz JC, Arends D, Bortfeldt R, Kutz-Lohroff B, Sharbati S, Einspanier R, Brockmann GA (2016) Feeding of Enterococcus faecium NCIMB 10415 leads to intestinal miRNA-423-5p-induced regulation of immune-relevant genes. Appl Environ Microbiol 82:2263–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhang M, Zheng E (2017) Comprehensive miRNA expression profiles in the ilea of Lawsonia intracellularis-infected pigs. J Vet Med Sci 79:282–289

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang S, Jiang X, Liu Y, Liu K, Yang C (2018) MicroRNA-let-7e regulates the progression and development of allergic rhinitis by targeting suppressor of cytokine signaling 4 and activating Janus kinase 1/signal transducer and activator of transcription 3 pathway. Exp Ther Med 15:3523–3529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Hou C, Wang G, Jia H, Yu H, Zeng X, Thacker PA, Zhang G, Qiao S (2017) Lactobacillus reuteri I5007 modulates intestinal host defense peptide expression in the model of IPEC-J2 cells and neonatal piglets. Nutrients 9:559

    Article  PubMed Central  CAS  Google Scholar 

  • Loh G, Hou C, Liu H, Zhang J, Zhang S, Yang F, Zeng X, Thacker PA, Zhang G, Qiao S (2015) Intestinal microbiota succession and immunomodulatory consequences after introduction of Lactobacillus reuteri I5007 in neonatal piglets. PLoS One 10:e0119505

    Article  CAS  Google Scholar 

  • Lu YC, Chang JT, Chan EC, Chao YK, Yeh TS, Chen JS, Cheng AJ (2016) miR-196, an emerging cancer biomarker for digestive tract cancers. J Cancer 7:650–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masotti A (2012) Interplays between gut microbiota and gene expression regulation by miRNAs. Front Cell Infect Microbiol 2:137

    Article  PubMed  PubMed Central  Google Scholar 

  • Moloney GM, Viola MF, Hoban AE, Dinan TG, Cryan JF (2018) Faecal microRNAs: indicators of imbalance at the host-microbe interface? Benef Microbes 9:175–183

    Article  CAS  PubMed  Google Scholar 

  • Mu Q, Tavella VJ, Luo XM (2018) Role of Lactobacillus reuteri in human health and diseases. Front Microbiol 9:757

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullany LE, Herrick JS, Sakoda LC, Samowitz W, Stevens JR, Wolff RK, Slattery ML (2018) miRNA involvement in cell cycle regulation in colorectal cancer cases. Genes Cancer 9:53–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nata T, Fujiya M, Ueno N, Moriichi K, Konishi H, Tanabe H, Ohtake T, Ikuta K, Kohgo Y (2013) MicroRNA-146b improves intestinal injury in mouse colitis by activating nuclear factor-kappaB and improving epithelial barrier function. J Gene Med 15:249–260

    Article  CAS  PubMed  Google Scholar 

  • Paveljsek D, Juvan P, Kosir R, Rozman D, Hacin B, Ivicak-Kocjan K, Rogelj I (2018) Lactobacillus fermentum L930BB and Bifidobacterium animalis subsp. animalis IM386 initiate signalling pathways involved in intestinal epithelial barrier protection. Benef Microbes 9:515–525

    Article  CAS  PubMed  Google Scholar 

  • Ren W, Wu S, Wu Y, Liu T, Zhao X, Li Y (2019) MicroRNA-196a/-196b regulate the progression of hepatocellular carcinoma through modulating the JAK/STAT pathway via targeting SOCS2. Cell Death Dis 10:333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schulte JN, Brockmann GA, Kreuzer-Redmer S (2016) Feeding a high dosage of zinc oxide affects suppressor of cytokine gene expression in Salmonella Typhimurium infected piglets. Vet Immunol Immunopathol 178:10–13

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Shirdel EA, Waldron L, Zhang RH, Jurisica I, Comelli EM (2012) The murine caecal microRNA signature depends on the presence of the endogenous microbiota. Int J Biol Sci 8:171–186

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Wu S, Dai CH, Sun SY, Zhu GQ, Wu SL, Bao WB (2018a) Insight into the molecular mechanism of miR-192 regulating Escherichia coli resistance in piglets. Biosci Rep 38:BSR20171160

  • Sun MC, Zhang FC, Yin X, Cheng BJ, Zhao CH, Wang YL, Zhang ZZ, Hao HW, Zhang TH, Ye HQ (2018b) Lactobacillus reuteri F-9-35 prevents DSS-induced colitis by inhibiting proinflammatory gene expression and restoring the gut microbiota in mice. J Food Sci 83:2645–2652

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Liu S, Men X, Xu Z (2017) Over-expression of miR-146b and its regulatory role in intestinal epithelial cell viability, proliferation, and apoptosis in piglets. Biol Direct 12:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas CM, Versalovic J (2010) Probiotics-host communication: modulation of signaling pathways in the intestine. Gut Microbes 1:178–163

    Article  Google Scholar 

  • Trengove MC, Ward AC (2013) SOCS proteins in development and disease. Am J Clin Exp Immunol 2:1–29

    PubMed  PubMed Central  Google Scholar 

  • Uribe JH, Collado-Romero M, Zaldivar-Lopez S, Arce C, Bautista R, Carvajal A, Cirera S, Claros MG, Garrido JJ (2016) Transcriptional analysis of porcine intestinal mucosa infected with Salmonella Typhimurium revealed a massive inflammatory response and disruption of bile acid absorption in ileum. Vet Res 47:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidigal JA, Ventura A (2015) The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol 25:137–147

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan V, Damle S, Zhang T, Opdenaker L, Modarai S, Accerbi M, Schmidt S, Green P, Galileo D, Palazzo J et al (2017) An miRNA expression signature for the human colonic stem cell niche distinguishes malignant from normal epithelia. Cancer Res 77:3778–3790

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang F, Liu C, Zhou H, Wu G, Qiao S, Li D, Wang J (2012) Dietary supplementation with the probiotic Lactobacillus fermentum I5007 and the antibiotic aureomycin differentially affects the small intestinal proteomes of weanling piglets. J Nutr 142:7–13

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Teng K, Liu G, Liu Y, Zhang J, Zhang X, Zhang M, Tao Y, Zhong J (2018) Lactobacillus reuteri HCM2 protects mice against enterotoxigenic Escherichia coli through modulation of gut microbiota. Sci Rep 8:17485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilczynska A, Bushell M (2015) The complexity of miRNA-mediated repression. Cell Death Differ 22:22–33

    Article  CAS  PubMed  Google Scholar 

  • Xiao YT, Yan WH, Cao Y, Yan JK, Cai W (2016) Neutralization of IL-6 and TNF-alpha ameliorates intestinal permeability in DSS-induced colitis. Cytokine 83:189–192

    Article  CAS  PubMed  Google Scholar 

  • Xie MY, Hou LJ, Sun JJ, Zeng B, Xi QY, Luo JY, Chen T, Zhang YL (2019) Porcine milk exosome MiRNAs attenuate LPS-induced apoptosis through inhibiting TLR4/NF-kappaB and p53 pathways in intestinal epithelial cells. J Agric Food Chem 67:9477–9491

    Article  CAS  PubMed  Google Scholar 

  • Xue X, Feng T, Yao S, Wolf KJ, Liu CG, Liu X, Elson CO, Cong Y (2011) Microbiota downregulates dendritic cell expression of miR-10a, which targets IL-12/IL-23p40. J Immunol 187:5879–5886

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132:562–575

    Article  CAS  PubMed  Google Scholar 

  • Yan T, Zhang F, He Y, Wang X, Jin X, Zhang P, Bi D (2018) Enterococcus faecium HDRsEf1 elevates the intestinal barrier defense against enterotoxigenic Escherichia coli and regulates occludin expression via activation of TLR-2 and PI3K signalling pathways. Lett Appl Microbiol 67:520–527

    Article  CAS  PubMed  Google Scholar 

  • Yang B (2018) Regulation mechanism of ssc-miR-1285 on key molecules of RIG-I signaling pathway during SVA infection of PK 15 cells., South China Agricultural University

  • Yang F, Wang A, Zeng X, Hou C, Liu H, Qiao S (2015) Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions. BMC Microbiol 15:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Wang C, Liu L, Zhang M (2020) Lactobacillus reuteri KT260178 supplementation reduced morbidity of piglets through its targeted colonization, improvement of cecal microbiota profile, and immune functions. Probiotics Antimicro 12:194–203

  • Ye L, Su X, Wu Z, Zheng X, Wang J, Zi C, Zhu G, Wu S, Bao W (2012) Analysis of differential miRNA expression in the duodenum of Escherichia coli F18-sensitive and -resistant weaned piglets. PLoS One 7:e43741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Lin D, Feng L, Huang M, Yan H, Li Y, Chen Y, Lin B, Ma Y, Ye Z et al (2018) Upregulation of miR-196b-5p attenuates BCG uptake via targeting SOCS3 and activating STAT3 in macrophages from patients with long-term cigarette smoking-related active pulmonary tuberculosis. J Transl Med 16:284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai Z, Wang J, Huang B, Yin S (2019) Low-fat yogurt alleviates the pro-inflammatory cytokine IL-1beta-induced intestinal epithelial barrier dysfunction. J Dairy Sci 102:976–984

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu W, Du J, Jin Y, Zhao M, Li L, Wang Y (2018) Prognostic impact of miR-196a/b expression in adult acute myeloid leukaemia: a single-centre, retrospective cohort study. J Int Med Res 46:3675–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Sui Y, Zheng X (2016) MiR-331-3p inhibits proliferation and promotes apoptosis by targeting HER2 through the PI3K/Akt and ERK1/2 pathways in colorectal cancer. Oncol Rep 35:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wu G, Yan W, Zhan H, Sun P (2017) miR-146b-5p regulates cell growth, invasion, and metabolism by targeting PDHB in colorectal cancer. Am J Cancer Res 7:1136–1150

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant number: 31702151) and the National Key Research and Development Program of China (Grant number: 2017YFD0500506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiu Huang.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Ethical approval

All animal protocols used in this study were in accordance with the Guidelines for the Administration of Affairs Concerning Experimental Animals, and the Institute Ethics Committee of the Chongqing Academy of Animal Science approved the relevant ethical issues (approval number: xky-20190218).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13258_2020_998_MOESM1_ESM.rar

Supplementary file1 Table S1. Distribution of small RNAs in each libraries. Table S2. The read counts of known porcine miRNAs. Table S3. Significantly enriched KEGG pathways for target genes of 19 DE miRNAs. Fig. S1. The length distribution of small RNAs. Fig. S2. The top 10 highly expressed miRNAs in the ileum mucosa of piglets. Fig. S3. The PI3K-Akt signalling pathway was enriched for target genes of 19 DE miRNAs. Fig. S4. The MAPK signalling pathway was enriched for target genes of 19 DE miRNAs. (RAR 557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Sun, Q., Wang, J. et al. Identification of differentially expressed miRNAs after Lactobacillus reuteri treatment in the ileum mucosa of piglets. Genes Genom 42, 1327–1338 (2020). https://doi.org/10.1007/s13258-020-00998-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-00998-6

Keywords

Navigation