Skip to main content
Log in

Identification of source-sink tissues in the leaf of Chinese cabbage (Brassica rapa ssp. pekinensis) by carbohydrate content and transcriptomic analysis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

A leaf of Chinese cabbage (Brassica rapa ssp. pekinensis) is composed of a photosynthetic blade and a non-photosynthetic large midrib; thus each leaf contains both source and sink tissues. This structure suggests that, unlike in other plants, source-sink metabolism is present in a single leaf of Chinese cabbage.

Objective

This study was designed to identify the transport route of photosynthetic carbon and to determine whether both source and sink tissues were present in a leaf.

Methods

Plant samples were collected diurnally. Their carbohydrate contents were measured, and a genome-wide transcriptome analysis was performed using the Br300K microarray. Expression profiles of selected genes were validated using qRT-PCR analysis.

Results

The presence of two contrasting tissues (blade as source and midrib as sink) in a leaf was demonstrated by (1) diurnal distribution patterns of starch and sucrose content; (2) Gene Ontology (GO) enrichment analysis of microarray data; (3) expression profiles of photosynthetic and sucrose biosynthetic genes; and (4) expression patterns of a variety of sugar transporter genes.

Conclusion

Source and sink tissues were both present in Chinese cabbage leaves, but the midrib functioned as a sink tissue as well as a site exporting to roots and other sink tissues. Function of most genes discriminating between source and sink tissue appeared to be regulated largely at the post-transcriptional level, not at the transcriptional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACT2:

Actin 2

ADG1:

ADP glucose pyrophosphorylase small subunit 1

AKIN10:

Arabidopsis SNF1 kinase homolog 10

AKIN11:

Arabidopsis SNF1 kinase homolog 11; SnRK1.1

AMY3:

Alpha-amylase-like 3

BAM6/BMY5:

Beta-amylase 6/beta-amylase 5

CCA1:

Circadian clock-associated 1

CHLSYN:

Chlorophyll synthase

CINV1:

Cytosolic invertase 1

CpFBPase:

Chloroplastic fructose-1,6-bisphosphatase

CWINV1:

Cell wall invertase 1

CytFBPase:

Cytosolic fructose-1,6-bisphosphatase

DBE1:

Debranching enzyme 1

EMB2729:

Alpha-amylase family protein

ERD6:

Early response to dehydration 6

ERD6-Like 7:

Major facilitator superfamily protein

GLT1:

Glucose transporter 1

HKL1:

Hexokinase-like 1

HKL3:

Hexokinase-like 3

HXK1:

Glucose insensitive 2

HXK2:

Hexokinase 2

HXK3:

Hexokinase 3

HXK4:

Hexokinase 4

INT1:

Inositol transporter 1

INT4:

Inositol transporter 4

IPMI:

Invertase/pectin methylesterase inhibitor family protein

ISA1:

Isoamylase 1/alpha-amylase

ISA3:

Isoamylase 3

LDA/PU1:

Limit dextrinase/Pullulanase 1

LHY:

Late elongated hypocotyl

LSH1:

Light-dependent short hypocotyl 1

OCT4:

Organic cation/carnitine transporter 4

PETE1:

Plastocyanin

PHT2:

Phosphate transporter 2

PHT6:

Phosphate transporter 6

PMT5/PLT5:

Polyol/monosaccharide transporter 5

PORB:

Protochlorophyllide oxidoreductase B

PORC:

Protochlorophyllide oxidoreductase C

PSBA:

Photosystem II protein D1

RUBISCO:

Ribulose 1,5-bisphosphate carboxylase/oxygenase

RBCS-1A:

RuBisCO small subunit 1A

RBCS-2B:

RuBisCO small subunit 2B

RCA:

RUBISCO ACTIVASE

SBE2.1:

Starch branching enzyme 2.1

SBE2.2:

Starch branching enzyme 2.2

SNF:

Sucrose non-fermenting

SnRK1:

SNF-related kinase 1

SPP1:

Sucrose-phosphatase 1

SPP3:

Sucrose-phosphatase 3

SPS:

Sucrose phosphate synthase

SS3:

Starch synthase 3

STP1:

Sugar transporter 1

STP13:

Sugar transporter protein 13

STP4:

Sugar transporter 4

STP6:

Sugar transporter 6

STP7:

Sugar transporter 7

SUC1:

Sugar-proton symporter 1

SUC2:

Sugar-proton symporter 2

SUC3/SUT2:

Sucrose transporter 3

SUC4/SUT4:

Sucrose transporter 4

SUC7:

Sucrose-proton symporter 7

SUS1:

Sucrose synthase 1

SUS3:

UDP-glycosyltransferase/sucrose synthase 3

SUS6:

UDP-glycosyltransferase/sucrose synthase 6

TMT1:

Tonoplast monosaccharide transporter 1

TMT2:

Tonoplast monosaccharide transporter 2

TOC1:

Timing of CAB expression

TOR:

Target of rapamycin

UTR3:

UDP-galactose transporter 3

UTR6:

UDP-galactose transporter 6

VAC-INV:

Vacuolar invertase

VGT1:

Vacuolar glucose transporter 1

3008:

Pollen Ole e 1 allergen and extensin family protein

References

  • Aguilera-Alvarado GP, Sánchez-Nieto S (2017) Plant hexokinases are multifaceted proteins. Plant Cell Physiol 58:1151–1160

    CAS  PubMed  Google Scholar 

  • Ainsworth EA, Bush DR (2011) Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol 155:64–69

    CAS  PubMed  Google Scholar 

  • Braun DM, Wang L, Ruan YL (2014) Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J Exp Bot 65:1713–1735

    CAS  PubMed  Google Scholar 

  • Brauner K, Birami B, Brauner HA, Heyer AG (2018) Diurnal periodicity of assimilate transport shapes resource allocation and whole-plant carbon balance. Plant J 94:776–789

    CAS  PubMed  Google Scholar 

  • Büttner M (2010) The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biol Suppl 1:35–41

    Google Scholar 

  • Chang TG, Zhu XG, Raines C (2017) Source-sink interaction: a century old concept under the light of modern molecular systems biology. J Exp Bot 68:4417–4431

    CAS  PubMed  Google Scholar 

  • Chardon F, Bedu M, Calenge F, Klemens PA, Spinner L, Clement G, Chietera G, Léran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus HE, Daniel-Vedele F, Krapp A (2013) Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr Biol 23:697–702

    CAS  PubMed  Google Scholar 

  • Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    CAS  PubMed  Google Scholar 

  • Crepin N, Rolland F (2019) Activation, signaling, and networking for energy homeostasis. Curr Opin Plant Biol 51:29–36

    CAS  PubMed  Google Scholar 

  • Daie J (1993) Cytosolic fructose-1,6-bisphosphatase: a key enzyme in the sucrose biosynthetic pathway. Photosynth Res 38:5–14

    CAS  PubMed  Google Scholar 

  • Dong X, Kim WK, Lim YP, Kim YK, Hur Y (2013) Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes. Plant Sci 199–200:7–17

    PubMed  Google Scholar 

  • Dong X, Lee J, Nou IS, Hur Y (2014) Expression characteristics of LSH genes in Brassica suggest their applicability for modification of leaf morphology and the use of their promoter for transgenesis. Plant Breed Biotech 2:126–138

    Google Scholar 

  • Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N (2018) Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta 247:587–611

    CAS  PubMed  Google Scholar 

  • Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG (2006) Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol 141:196–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol 25:53–62

    CAS  PubMed  Google Scholar 

  • Foyer CH, Paul MJ (2001) Source–sink relationships. In: Encyclopedia of Life Sciences. Nature Publishing, pp 1–11

  • Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99:1443–1448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottwald JR, Krysan PJ, Young JC, Evert RF, Sussman MR (2000) Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci USA 97:13979–13984

    CAS  PubMed  Google Scholar 

  • Guo WJ, Nagy R, Chen HY, Pfrunder S, Yu YC, Santelia D, Frommer WB, Martinoia E (2014) SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol 164:777–789

    CAS  PubMed  Google Scholar 

  • Hennion N, Durand M, Vriet C, Doidy J, Maurousset L, Lemoine R, Pourtau N (2019) Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol Plant 165:44–57

    CAS  PubMed  Google Scholar 

  • Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    PubMed  PubMed Central  Google Scholar 

  • Ito S, Kawamura H, Niwa Y, Nakamichi N, Yamashino T, Mizuno T (2009) A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) gene. Plant Cell Physiol 50:290–303

    CAS  PubMed  Google Scholar 

  • Izumi M, Tsunoda H, Suzuki Y, Makino A, Ishida H (2012) RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. J Exp Bot 63:2159–2170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones TL, Ort DR (1997) Circadian regulation of sucrose phosphate synthase activity in tomato by protein phosphatase activity. Plant Physiol 113:1167–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karthikeyan AS, Ballachanda DN, Raghothama KG (2009) Promoter deletion analysis elucidates the role of cis elements and 5’UTR intron in spatiotemporal regulation of AtPht1;4 expression in Arabidopsis. Physiol Plant 136:10–18

    CAS  PubMed  Google Scholar 

  • Karve A, Rauh BL, Xia X, Kandasamy M, Meagher RB, Sheen J, Moore BD (2008) Expression and evolutionary features of the hexokinase gene family in Arabidopsis. Planta 228:411–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J (2019) Sugar metabolism as input signals and fuel for leaf senescence. Genes Genom 41:737–746

    CAS  Google Scholar 

  • Kozuka T, Horiguchi G, Kim GT, Ohgishi M, Sakai T, Tsukaya H (2005) The different growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are regulated by photoreceptors and sugar. Plant Cell Physiol 46:213–223

    CAS  PubMed  Google Scholar 

  • Kozuka T, Kobayashi J, Horiguchi G, Demura T, Sakakibara H, Tsukaya H, Nagatani A (2010) Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol 153:1608–1618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monroe JD, Storm AR (2018) The Arabidopsis β-amylase (BAM) gene family: diversity of form and function. Plant Sci 276:163–170

    CAS  PubMed  Google Scholar 

  • Monroe JD, Storm AR, Badley EM, Lehman MD, Platt SM, Saunders LK, Schmitz JM, Torres CE (2014) β-Amylase1 and β-Amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions. Plant Physiol 166:1748–1763

    PubMed  PubMed Central  Google Scholar 

  • Muir JG, Rose R, Rosella O, Liels K, Barrett JS, Shepherd SJ, Gibson PR (2009) Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography (HPLC). J Agric Food Chem 57:554–565

    CAS  PubMed  Google Scholar 

  • Mun M, Xu M, Park YD, Hur Y (2009) Organic nutrition and gene expression in different tissues of Chinese cabbage. Hortic Environ Biotechnol 50:166–174

    CAS  Google Scholar 

  • Poschet G, Hannich B, Büttner M (2010) Identification and characterization of AtSTP14, a novel galactose transporter from Arabidopsis. Plant Cell Physiol 51:1571–1580

    CAS  PubMed  Google Scholar 

  • Price J, Laxmi A, Jang J (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rautengarten C, Ebert B, Moreno I, Temple H, Herter T, Link B, Doñas-Cofré D, Moreno A, Saéz-Aguayo S, Blanco F, Mortimer JC, Schultink A, Reiter WD, Dupree P, Pauly M, Heazlewood JL, Scheller HV, Orellana A (2014) The golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis. Proc Natl Acad Sci USA 111:11563–11568

    CAS  PubMed  Google Scholar 

  • Reinders A, Panshyshyn JA, Ward JM (2005) Analysis of transport activity of Arabidopsis sugar alcohol permease homolog AtPLT5. J Biol Chem 280:1594–1602

    CAS  PubMed  Google Scholar 

  • Rodrigues J, Inzé D, Nelissen H, Saibo NJM (2019) Source-sink regulation in crops under water deficit. Trends Plant Sci 24:652–663

    CAS  PubMed  Google Scholar 

  • Rottmann T, Klebl F, Schneider S, Kischka D, Rüscher D, Sauer N, Stadler R (2018) Sugar transporter STP7 specificity for l-arabinose and d-xylose contrasts with the typical hexose transporters STP8 and STP12. Plant Physiol 176:2330–2350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider S, Beyhl D, Hedrich R, Sauer N (2008) Functional and physiological characterization of Arabidopsis INOSITOL TRANSPORTER1, a novel tonoplast-localized transporter for myo-inositol. Plant Cell 20:1073–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sivitz AB, Reinders A, Ward JM (2008) Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose induced anthocyanin accumulation. Plant Physiol 147:92–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ 30:1126–1149

    CAS  PubMed  Google Scholar 

  • Srivastava AC, Ganesan S, Ismail IO, Ayre BG (2008) Functional characterization of the Arabidopsis AtSUC2 Sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiol 148:200–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler R, Sauer N (1996) The Arabidopsis thaliana AtSUC2 gene is specifically expressed in companion cells. Bot Acta 109:299–306

    CAS  Google Scholar 

  • Stitt M (1990) Fructose-2,6-bisphosphate as regulatory metabolite in plants. Annu Rev Plant Physiol Plant Mol Biol 41:153–185

    CAS  Google Scholar 

  • Tsukaya H, Kozuka T, Kim GT (2002) Genetic control of petiole length in Arabidopsis thaliana. Plant Cell Physiol 43:1221–1228

    CAS  PubMed  Google Scholar 

  • Weise A, Barker L, Kühn C, Lalonde S, Buschmann H, Frommer WB, Ward JM (2000) A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell 12:1345–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Workman C, Jensen LJ, Jarmer H, Berka R, Gautier L, Nielser HB, Saxild HH, Nielsen C, Brunak S, Knudsen S (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 3(9):research0048

    PubMed  PubMed Central  Google Scholar 

  • Zhang ZW, Yuan S, Xu F, Yang H, Zhang NH, Cheng J, Lin HH (2010) The plastid hexokinase pHXK: a node of convergence for sugar and plastid signals in Arabidopsis. FEBS Lett 584:3573–3579

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Research Fund of Chungnam National University (CNU), Daejeon, Korea, to Yoonkang Hur (2018-1201-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoonkang Hur.

Ethics declarations

Conflict of interest

The authors have declared that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Dong, X., Choi, K. et al. Identification of source-sink tissues in the leaf of Chinese cabbage (Brassica rapa ssp. pekinensis) by carbohydrate content and transcriptomic analysis. Genes Genom 42, 13–24 (2020). https://doi.org/10.1007/s13258-019-00873-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00873-z

Keywords

Navigation