Skip to main content
Log in

NGS sequencing reveals that many of the genetic variations in transgenic rice plants match the variations found in natural rice population

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

As the transformation process can induce mutations in host plants, molecular characterization of the associated genomic changes is important not only for practical food safety but also for understanding the fundamental theories of genome evolution.

Objectives

To investigate a population-scale comparative study of the genome-wide spectrum of sequence variants in the transgenic genome with the variations present in 3000 rice varieties.

Results

On average, we identified 19,273 SNPs (including Indels) per transgenic line in which 10,729 SNPs were at the identical locations in the three transgenic rice plants. We found that these variations were predominantly present in specific regions in chromosomes 8 and 10. Majority (88%) of the identified variations were detected at the same genomic locations as those in natural rice population, implying that the transgenic induced mutations had a tendency to be common alleles.

Conclusion

Genomic variations in transgenic rice plants frequently occurred at the same sites as the major alleles found in the natural rice population, which implies that the sequence variations occur within the limits of a biological system to ensure survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets supporting the results of this article are available in the NCBI Sequence Read Archive repository [SRX2762614, SRX2762615, SRX2762616, SRX2762617, SRX2762618, and SRX2762619]. The SNP and Indel datasets of the 3K rice genomes are available in a public repository under the link: http://snp-seek.irri.org/_download.zul (Mansueto et al. 2017).

Abbreviations

SNP:

Single nucleotide polymorphism

Indel:

Insertion and deletion

Mb:

Mega base pair

3K RGP:

3000 rice genomes project

GM:

Genetically modified

T-DNA:

Transfer DNA

Kb:

Kilo base pair

2, 4-D:

2, 4-Dichlorophenoxyacetic acid

DSB:

Double strand breaks

BWA:

Burrow Wheeler Aligner

GATK:

Genome analysis toolkit

SEA:

Singular enrichment analysis.

References

  • Alexandrov N, Tai S, Wang W, Mansueto L, Palis K, Fuentes RR, Ulat VJ, Chebotarov D, Zhang G, Li Z et al (2015) SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res 43(Database issue):D1023–D1027

    Article  CAS  PubMed  Google Scholar 

  • Amos W (2010) Even small SNP clusters are non-randomly distributed: is this evidence of mutational non-independence? Proc Biol Sci 277:1443–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JE, Michno JM, Kono TJ, Stec AO, Campbell BW, Curtin SJ, Stupar RM (2016) Genomic variation and DNA repair associated with soybean transgenesis: a comparison to cultivars and mutagenized plants. BMC Biotechnol 16:41. https://doi.org/10.1186/s12896-016-0271-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbeithuber B, Betancourt AJ, Ebner T, Tiemann-Boege I (2015) Crossovers are associated with mutation and biased gene conversion at recombination hotspots. Proc Natl Acad Sci USA 112:2109–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92

    Article  CAS  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  • Goodman RM, Hauptli H, Crossway A, Knauf VC (1987) Gene transfer in crop improvement. Science 236:48–54

    Article  CAS  PubMed  Google Scholar 

  • Gross BL, Zhao Z (2014) Archaeological and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci USA 111:6190–6197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttikonda SK, Marri P, Mammadov J, Ye L, Soe K, Richey K, Cruse J, Zhuang MB, Gao ZF, Evans C et al (2016) Molecular characterization of transgenic events using next generation sequencing approach. PLoS ONE 11(2):e0149515. https://doi.org/10.1371/journal.pone.0149515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W et al (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jiang C, Mithani A, Gan X, Belfield EJ, Klingler JP, Zhu JK, Ragoussis J, Mott R, Harberd NP (2011) Regenerant Arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Curr Biol 21:1385–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu JZ, Zhou SG et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4. https://doi.org/10.1186/1939-8433-6-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawakatsu T, Kawahara Y, Itoh T, Takaiwa F (2013) A Whole-genome analysis of a transgenic rice seed-based edible vaccine against cedar pollen allergy. DNA Res 20:623–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler DA, Taylor MR, Maryanski JH, Flamm EL, Kahi LS (1992) The safety of foods developed by biotechnology. Science 256:1747–1749

    Article  CAS  PubMed  Google Scholar 

  • König A, Cockburn A, Crevel RWR, Debruyne E, Grafstroem R, Hammerling U, Kimber I, Knudsen I, Kuiper HA, Peijnenburg AA et al (2004) Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem Toxicol 42:1047–1088

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Hohn B (2000) Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J 19:4431–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labra M, Vannini C, Grassi F, Bracale M, Balsemin M, Basso B, Sala F (2004) Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip. Theor Appl Genet 109:1512–1518

    Article  CAS  PubMed  Google Scholar 

  • Lee DK, Park SH, Seong SY, Kim YS, Jung H, Do Choi Y, Kim JK (2016) Production of insect-resistant transgenic rice plants for use in practical agriculture. Plant Biotechnol Rep 10:391–401

    Article  Google Scholar 

  • Lercher MJ, Hurst LD (2002) Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet 18:337–340

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Chern M, Jain R, Martin JA, Schackwitz WS, Jiang L, Vega-Sanchez ME, Lipzen AM, Barry KW, Schmutz J et al (2016) Genome-wide sequencing of 41 Rice (Oryza sativa L.) mutated lines reveals diverse mutations induced by fast-neutron irradiation. Mol Plant 9:1078–1081

    Article  CAS  PubMed  Google Scholar 

  • Li R, Quan S, Yan X, Biswas S, Zhang D, Shi J (2017) Molecular characterization of genetically-modified crops: challenges and strategies. Biotechnol Adv 35:302–309

    Article  CAS  PubMed  Google Scholar 

  • Mansueto L, Fuentes RR, Borja FN, Detras J, Abriol-Santos JM, Chebotarov D, Sanciangco M, Palis K, Copetti D, Poliakov A et al (2017) Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic Acids Res 45(D1):D1075–D1081. https://doi.org/10.1093/nar/gkw1135

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Wright MH, Tung CW, Maron LG, McNally KL, Fitzgerald M, Singh N, DeClerck G, Agosto-Perez F, Korniliev P et al (2016) Open access resources for genome-wide association mapping in rice. Nat Commun 7:10532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE et al (2009) Genome wide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106:12273–12278

    Article  PubMed  PubMed Central  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H, Katayose Y, Takahashi A, Matsumoto T, Hirochika H (2012) Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol 53:256–264

    Article  CAS  PubMed  Google Scholar 

  • Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD et al (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA 108:8351–8356

    Article  PubMed  PubMed Central  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94

    Article  CAS  PubMed  Google Scholar 

  • Park D, Park SH, Ban YW, Kim YS, Park KC, Kim NS, Kim JK, Choi IY (2017) A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data. BMC Biotechnol 17:67. https://doi.org/10.1186/s12896-017-0386-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rattray A, Santoyo G, Shafer B, Strathern JN (2015) Elevated mutation rate during meiosis in Saccharomyces cerevisiae. PLoS Genet 11(1):e1004910. https://doi.org/10.1371/journal.pgen.1004910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci USA 104(Suppl 1):8641–8648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H, Yang CC, Iwamoto M, Abe T et al (2013) Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 54:e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shee C, Gibson JL, Rosenberg SM (2012) Two mechanisms produce mutation hotspots at DNA breaks in Escherichia coli. Cell Rep 2(4):714–721. https://doi.org/10.1093/pcp/pcs183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparrow PA (2010) GM risk assessment. Mol Biotechnol 44:267–275

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Hu Z, Zheng T, Lu K, Zhao Y, Wang W, Shi J, Wang C, Lu J, Zhang D et al (2017) RPAN: rice pan-genome browser for approximately 3000 rice genomes. Nucleic Acids Res 45:597–605

    Article  CAS  PubMed  Google Scholar 

  • The 3,000 rice genomes project (2014) The 3,000 rice genomes project. GigaScience 3:7. https://doi.org/10.1186/2047-217X-3-7

    Article  CAS  Google Scholar 

  • Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat Genet 24:355–361

    Article  CAS  PubMed  Google Scholar 

  • Weber N, Halpin C, Hannah LC, Jez JM, Kough J, Parrott W (2012) Crop genome plasticity and its relevance to food and feed safety of genetically engineered breeding stacks. Plant Physiol 160:1842–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei FJ, Kuang LY, Oung HM, Cheng SY, Wu HP, Huang LT, Tseng YT, Chiou WY, Hsieh-Feng V, Chung CH et al (2016) Somaclonal variation does not preclude the use of rice transformants for genetic screening. Plant J 85:648–659

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Sharp PM, Li WH (1989) Mutation rates differ among regions of the mammalian genome. Nature 337:283–285

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L et al (2011) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Nagasaki H, Yonemaru J, Ebana K, Nakajima M, Shibaya T, Yano M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:267. https://doi.org/10.1186/1471-2164-11-267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Wang Z, Wang N, Gao Y, Liu Y, Wu Y, Bai Y, Zhang Z, Lin X, Dong Y et al (2014) Tissue culture-induced heritable genomic variation in rice, and their phenotypic implications. PLoS ONE 9(5):e96879. https://doi.org/10.1371/journal.pone.0096879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from the Next-Generation BioGreen21 Program (PJ013658022018 to YSK), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

JKK and IYC conceived and designed the project. DP was a major contributor to the data analysis and drafted the manuscript. SHP and YSK constructed the transgenic plants and prepared sample materials. BSC analyzed the data. NSK analyzed the data and wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ju-Kon Kim, Nam-Soo Kim or Ik-Young Choi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D., Park, SH., Kim, Y.S. et al. NGS sequencing reveals that many of the genetic variations in transgenic rice plants match the variations found in natural rice population. Genes Genom 41, 213–222 (2019). https://doi.org/10.1007/s13258-018-0754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0754-5

Keywords

Navigation