Skip to main content
Log in

Genetic profiling of thoroughbred racehorses by microsatellite marker analysis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The thoroughbred (TB) horse breed has exceptional physiological traits and is well-known in horse racing. It has been bred for endurance, strength, and speed for 300 years. Recently, there have been many studies on the molecular characteristics or mechanisms associated with elite athletic performance of the TB breed, and sequence variants in exercise-related genes have also been reported. Here, using 12 microsatellite markers, we assessed genetic diversity and relationships among two groups of TB racehorses (registered by the Seoul Race Park of the Korea Racing Authority) that showed the 48 highest and lowest scores in races. When comparing allelic variation between the highest- and lowest-scoring TB horse groups, a total of 53 different alleles were detected by genotyping with 6′FAM-labelled primers. The genetic variation between the two groups was similar [mean number of alleles (N A ) = 4.00 and 4.08; allelic richness (A R ) = 3.95 and 4.01; observed heterozygosity (H O ) = 0.53 and 0.56, respectively]. However, among the 53 alleles that we assessed, four alleles were detected only in the highest-scoring and five alleles only in the lowest-scoring racing horse group. The group-specific unique alleles indicate that the microsatellite markers could distinguish horses that showed high or low scores in a race. This study demonstrates the feasibility of microsatellite analyses for selection of superior racehorses and suggests further study to understand the relationship between molecular features and phenotype (racing performance).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bowling AT, Eggleston-Stott ML, Byrns G, Clark RS, Dileanis S, Wictum E (1997) Validation of microsatellite markers for routine horse parentage testing. Anim Genet 28:247–252

    Article  CAS  PubMed  Google Scholar 

  • Breen M, Lindgren G, Binns MM, Norman J, Irvin Z, Bell K, Sandberg K, Ellegren H (1997) Genetical and physical assignments of equine microsatellites—first integration of anchored markers in horse genome mapping. Mamm Genome 8:267–273

    Article  CAS  PubMed  Google Scholar 

  • Coogle L, Bailey E, Reid R, Russ M (1996) Equine dinucleotide repeat polymorphisms at loci LEX002, -003, -004, -005, -007, -008, -009, -010, -011, -013 and -014. Anim Genet 27:126–127

    CAS  PubMed  Google Scholar 

  • Dempsey JA, Wagner PD (1999) Exercise-induced arterial hypoxemia. J Appl Physiol 87:1997–2006

    CAS  PubMed  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H, Johansson M, Sandberg K, Andersson L (1992) Cloning of highly polymorphic microsatellites in the horse. Anim Genet 23:133–142

    Article  CAS  PubMed  Google Scholar 

  • Essen-Gustavsson B, Lindholm A (1985) Muscle fibre characteristics of active and inactive standardbred horses. Equine Vet J 17:434–438

    Article  CAS  PubMed  Google Scholar 

  • Gaffney B, Cunningham EP (1988) Estimation of genetic trend in racing performance of thoroughbred horses. Nature 332:722–724

    Article  CAS  PubMed  Google Scholar 

  • Gemayel R, Vinces MD, Legendre M, Verstrepen KJ (2010) Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 44:445–477

    Article  CAS  PubMed  Google Scholar 

  • Guérin G, Bertaud M, Amigues Y (1994) Characterization of seven new horse microsatellites: HMS1, HMS2, HMS3, HMS5, HMS6, HMS7 and HMS8. Anim Genet 25:62

    PubMed  Google Scholar 

  • Hannan A (2010) Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for ‘missing heritability’. Trends Genet 26:59–65

    Article  CAS  PubMed  Google Scholar 

  • Hillyer LL, Pettitt LA, Debenham SL, Swinburne JE, Binns MM, Price JS (2005) Equine microsatellites associated with the COMP, LRP5 and COL1A1 genes. Anim Genet 36:261–262

    Article  CAS  PubMed  Google Scholar 

  • Hyyppa S, Rasanen LA, Poso AR (1997) Resynthesis of glycogen in skeletal muscle from standardbred trotters after repeated bouts of exercise. Am J Vet Res 58:162–166

    CAS  PubMed  Google Scholar 

  • Jones JH, Longworth KE, Lindholm A, Conley KE, Karas RH, Kayar SR, Taylor CR (1989) Oxygen transport during exercise in large mammals. I. Adaptive variation in oxygen demand. J Appl Physiol 67:862–870

    CAS  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Khanshour A, Conant E, Juras R, Cothran EG (2013) Microsatellite analysis of genetic diversity and population structure of Arabian horse populations. J Hered 104:386–398

    Article  CAS  PubMed  Google Scholar 

  • Klukowska-Rötzler J, Jost U, Schelling C, Dolf G, Chowdhary BP, Leeb T, Gerber V (2006) Characterization and RH mapping of six gene-associated equine microsatellite markers. Anim Genet 37:305–306

    Article  PubMed  Google Scholar 

  • Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    Article  CAS  PubMed  Google Scholar 

  • Marklund S, Ellegren H, Eriksson S, Sandberg K, Andersson L (1994) Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellites. Anim Genet 25:19–23

    Article  CAS  PubMed  Google Scholar 

  • Payseur BA, Jing P, Haasl RJ (2011) A genomic portrait of human microsatellite variation. Mol Biol Evol 28:303–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poso AR, Essen-Gustavsson B, Persson SG (1993) Metabolic response to standardised exercise test in standardbred trotters with red cell hypervolaemia. Equine Vet J 25:527–531

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA, Gemmell N (2013) Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLoS One. doi:10.1371/journal.pone.0054710

    Google Scholar 

  • Sun JX, Helgason A, Masson G, Ebenesersdóttir SS, Li H, Mallick S, Gnerre S, Patterson N, Kong A, Reich D, Stefansson K (2012) A direct characterization of human mutation based on microsatellites. Nat Genet 44:1161–1165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swinburne J, Gerstenberg C, Breen M, Aldridge V, Lockhart L, Marti E, Antczak D, Eggleston-Stott M, Bailey E, Mickelson J, Røed K, Lindgren G, von Haeringen W, Guérin G, Bjarnason J, Allen T, Binns M (2000) First comprehensive low-density horse linkage map based on two 3-generation, full-sibling, cross-bred horse reference families. Genomics 66:123–134

    Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tseng CT, Miller D, Cassano J, Bailey E, Antczak DF (2010) Identification of equine major histocompatibility complex haplotypes using polymorphic microsatellites. Anim Genet. doi:10.1111/j.1365-2052.2010.02125.x

    PubMed Central  PubMed  Google Scholar 

  • van de Goor LH, Panneman H, van Haeringen WA (2010) A proposal for standardization in forensic equine DNA typing: allele nomenclature for 17 equine-specific STR loci. Anim Genet 41:122–127

    Article  PubMed  Google Scholar 

  • van Haeringen H, Bowling AT, Stott ML, Lenstra JA, Zwaagstra KA (1994) A highly polymorphic horse microsatellite locus: VHL20. Anim Genet 25:207

    Google Scholar 

  • Wagner P (1995) Determinants of V-O2max: man vs horse. J Equine Vet Sci 15:398–404

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Next-Generation BioGreen 21 Program (No. PJ0081062011), Rural Development Administration, Republic of Korea.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heui-Soo Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eo, J., Gim, JA., Choi, BH. et al. Genetic profiling of thoroughbred racehorses by microsatellite marker analysis. Genes Genom 36, 119–123 (2014). https://doi.org/10.1007/s13258-013-0149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-013-0149-6

Keywords

Navigation