Skip to main content
Log in

ABA signal transduction from ABA receptors to ion channels

  • Review
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The plant hormone abscisic acid (ABA) is involved in regulating a number of major processes such as seed dormancy, seedling development, and biotic and abiotic stress responses. The function and effect of ABA on pathogens are still unclear, but the roles of ABA in seed germination and abiotic stress responses have been well characterized. Abiotic stresses elevate ABA levels and activate ABA signaling; thus, inducing a variety of responses, including the expression of stress-related genes and stomatal closure. The past decade has witnessed many significant advances in our understanding of ABA signal transduction due to application of a combination of approaches including genetics, biochemistry, electrophysiology, and chemical genetics. A number of proteins associated with the ABA signal transduction pathway such as PYR/PYL/RCAR family of START proteins, have been identified. These ABA receptors bind to ABA and positively regulate ABA signaling via inactivation of PP2C phosphatase activity, which inhibits SnRK2-type kinases by direct interaction and dephosphorylation. Additionally, SnRK2-type kinases and PP2Cs interact with one another and with other components of ABA signaling and function as positive and negative ABA regulators, respectively. In this review, we focus on ABA function to abiotic stresses and highlight each component in relation to ABA and its interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MR and Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Lett. 486: 93–98.

    Article  PubMed  CAS  Google Scholar 

  • Adie BA, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA and Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19: 1665–1681.

    Article  PubMed  CAS  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR and Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16: 3460–3479.

    Article  PubMed  CAS  Google Scholar 

  • Apse MP and Blumwald E (2002) Engineering salt tolerance in plants. Curr. Opin. Biotechnol. 13: 146–150.

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (2003) OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci. 8: 151–153.

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (2005) G proteins Go green: a plant G protein signaling FAQ sheet. Science 310: 71–73.

    Article  PubMed  CAS  Google Scholar 

  • Becker D, Hoth S, Ache P, Wenkel S, Roelfsema MR, Meyerhoff O, Hartung W and Hedrich R (2003) Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett. 554: 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR and Thiel G (1994) K+ channels of stomatal guard cells: bimodal control of the K+ inward-rectifier evoked by auxin. Plant J. 5: 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS and Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J. 45: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Chen JG and Jones AM (2004) AtRGS1 function in Arabidopsis thaliana. Methods Enzymol. 389: 338–350.

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM and Siderovski DP (2003) A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301: 1728–1731.

    Article  PubMed  CAS  Google Scholar 

  • Christmann A and Grill E (2009) Are GTGs ABA’s biggest fans? Cell 136: 21–23.

    Article  PubMed  CAS  Google Scholar 

  • Cohen PT (1997) Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem. Sci. 22: 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Colucci G, Apone F, Alyeshmerni N, Chalmers D and Chrispeels MJ (2002) GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc. Natl. Acad. Sci. USA 99: 4736–4741.

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR and Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61: 651–679.

    Article  PubMed  CAS  Google Scholar 

  • Das AK, Helps NR, Cohen PT and Barford D (1996) Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J. 15: 6798–6809.

    PubMed  CAS  Google Scholar 

  • Desikan R, Griffiths R, Hancock J and Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 99: 16314–16318.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein R, Gampala SS, Lynch TJ, Thomas TL and Rock CD (2005) Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Mol. Biol. 59: 253–267.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SS and Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14Suppl:S15–45.

    PubMed  CAS  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL and Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462: 660–664.

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Verslues PE and Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19: 485–494.

    Article  PubMed  CAS  Google Scholar 

  • Fujii H and Zhu JK (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl. Acad. Sci. USA 106: 8380–8385.

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, et al. (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50: 2123–2132.

    Article  PubMed  CAS  Google Scholar 

  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K and Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. USA 103: 1988–1993.

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Zeng Q, Guo J, Cheng J, Ellis BE and Chen JG (2007) Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Plant J. 52: 1001–1013.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L and Blatt MR (2003) Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc. Natl. Acad. Sci. USA 100: 11116–11121.

    Article  PubMed  CAS  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KA, Grill E, Romeis T, et al. (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2 + affinities. Proc. Natl. Acad. Sci. USA 107: 8023–8028.

    Article  PubMed  CAS  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA, et al. (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc. Natl. Acad. Sci. USA 106: 21425–21430.

    Article  PubMed  CAS  Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N and Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11: 1897–1910.

    PubMed  CAS  Google Scholar 

  • Guo J, Zeng Q, Emami, M, Ellis BE and Chen JG (2008) The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS One 3: e2982.

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Xiong L, Song CP, Gong D, Halfter U and Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev. Cell 3: 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Halford NG and Hey SJ (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem. J. 419: 247–259.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK and Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463–499.

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach A, Hoffmann T, Leube M, Hohener B and Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J. 21: 3029–3038.

    Article  PubMed  CAS  Google Scholar 

  • Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, et al. (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc. Natl. Acad. Sci. USA 100: 5549–5554.

    Article  PubMed  CAS  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, et al. (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132: 666–680.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED and Schroeder JI (2010) Earlyabscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev. 24: 1695–1708.

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Koonin EV and Aravind L (2001) Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins 43: 134–144.

    Article  PubMed  CAS  Google Scholar 

  • Kang JY, Choi HI, Im MY and Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14: 343–357.

    Article  PubMed  CAS  Google Scholar 

  • Kerk D, Bulgrien J, Smith DW, Barsam B, Veretnik S and Gribskov M. (2002) The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol. 129: 908–925.

    Article  PubMed  CAS  Google Scholar 

  • Kitahata N, Nakano T, Kuchitsu K, Yoshida S and Asami T (2005) Biotin-labeled abscisic acid as a probe for investigating abscisic acid binding sites on plasma membranes of barley aleurone protoplasts. Bioorganic Medicinal Chem. 13: 3351–3358.

    Article  CAS  Google Scholar 

  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A and Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J. 44: 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H, Kagaya Y and Hattori T (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16: 1163–1177.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH and Schroeder JI (2006) The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol. 140: 127–139.

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, DeLong A and Schroeder JI (2002) Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell 14: 2849–2861.

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD and Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22: 2623–2633.

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Lan W, Buchanan BB and Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc. Natl. Acad. Sci. USA 106: 21419–21424.

    Article  PubMed  CAS  Google Scholar 

  • Lemtiri-Chlieh F and MacRobbie EA (1994) Role of calcium in the modulation of Vicia guard cell potassium channels by abscisic acid: a patch-clamp study. J. Membr. Biol. 137: 99–107.

    PubMed  CAS  Google Scholar 

  • Leung J, Orfanidi S, Chefdor F, Mezaros T, Bolte S, Mizoguchi T, Shinozaki K, Giraudat J and Bogre L (2006) Antagonistic interaction between MAP kinase and protein phosphatase 2C in stress recovery. Plant Sci. 171: 596–606.

    Article  CAS  Google Scholar 

  • Levchenko V, Konrad KR, Dietrich P, Roelfsema MR and Hedrich R (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2 + signals. Proc. Natl. Acad. Sci. USA 102: 4203–4208.

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH and Ma L (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315: 1712–1716.

    Article  PubMed  CAS  Google Scholar 

  • Lytle BL, Song J, de la Cruz NB, Peterson FC, Johnson KA, Bingman CA, Phillips GN Jr and Volkman BF (2009) Structures of two Arabidopsis thaliana major latex proteins represent novel helix-grip folds. Proteins 76: 237–243.

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A and Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324: 1064–1068.

    PubMed  CAS  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J and Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411: 709–713.

    Article  PubMed  CAS  Google Scholar 

  • Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, Suino-Powell KM, Park SY, Weiner JJ, Fujii H, Chinnusamy V, et al. (2009) A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462: 602–608.

    Article  PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W and He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46: 101–122.

    Article  PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K and He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969–980.

    Article  PubMed  CAS  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A and Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J. 25: 295–303.

    Article  PubMed  CAS  Google Scholar 

  • Miedema H and Assmann SM (1996) A membrane-delimited effect of internal pH on the K+ outward rectifier of Viciafaba guard cells. J. Membr. Biol. 154: 227–237.

    Article  PubMed  CAS  Google Scholar 

  • Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang HJ, Asano A, Miyauchi Y, Takahashi M, Zhi Y, Fujita Y, et al. (2009) Structural basis of abscisic acid signalling. Nature 462: 609–614.

    Article  PubMed  CAS  Google Scholar 

  • Murata Y, Pei ZM, Mori IC and Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2 + channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13: 2513–2523.

    PubMed  CAS  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F and Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14: 3089–3099.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, et al. (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol. 50: 1345–1363.

    Article  PubMed  CAS  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M and Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452: 483–486.

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D and Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 59: 165–176.

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A and Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol. 128: 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI and Getzoff ED (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326: 1373–1379.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura N, Sarkeshik A, Nito K, Park SY, Wang A, Carvalho PC, Lee S, Caddell DF., Cutler SR, Chory J, et al. (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J. 61: 290–299.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K and Hirayama T (2007) ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J.50: 935–949.

    Google Scholar 

  • Nishimura N, Yoshida T, Murayama M, Asami T, Shinozaki K and Hirayama T (2004) Isolation and characterization of novel mutants affecting the abscisic acid sensitivity of Arabidopsis germination and seedling growth. Plant Cell Physiol. 45: 1485–1499.

    Article  PubMed  CAS  Google Scholar 

  • Offermanns S (2003) G-proteins as transducers in transmembranesignalling. Prog. Biophys. Mol. Biol. 83: 101–130.

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Guo Y, Halfter U and Zhu JK (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc. Natl. Acad. Sci. USA100: 11771–11776.

    Article  PubMed  CAS  Google Scholar 

  • Pandey S and Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16: 1616–1632.

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Nelson DC and Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136: 136–148.

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, et al. (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324: 1068–1071.

    PubMed  CAS  Google Scholar 

  • Pedron J, Brault M, Nake C and Miginiac E (1998) Detection of abscisic-acid-binding proteins in the microsomal protein fraction of Arabidopsis thaliana with abscisic-acid-protein conjugates used as affinity probes. Eur. J. Biochem. 252: 385–390.

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Kuchitsu K, Ward JM, Schwarz M and Schroeder JI (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9: 409–423.

    PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E and Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731–734.

    Article  PubMed  CAS  Google Scholar 

  • Pierce KL, Premont RT and Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3: 639–650.

    Article  PubMed  CAS  Google Scholar 

  • Plakidou-Dymock S, Dymock D and Hooley R (1998) A higher plant seven-transmembrane receptor that influences sensitivity to cytokinins. Curr. Biol. 8: 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Popko J, Hansch R, Mendel RR, Polle A and Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol. 12: 242–258.

    Article  PubMed  CAS  Google Scholar 

  • Ramanjulu S and Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ. 25: 141–151.

    Article  PubMed  CAS  Google Scholar 

  • Risk JM, Day CL and Macknight RC (2009) Reevaluation of abscisic acid-binding assays shows that G-Protein-Coupled Receptor2 does not bind abscisic Acid. Plant Physiol. 150: 6–11.

    Article  PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R and Jones JD (2007) Pathological hormone imbalances. Curr. Opin. Plant Biol. 10: 372–379.

    Article  PubMed  CAS  Google Scholar 

  • Robert N, Merlot S, N’Guyen V, Boisson-Dernier A and Schroeder JI (2006) A hypermorphic mutation in the protein phosphatase 2C HAB1 strongly affects ABA signaling in Arabidopsis. FEBS Lett. 580: 4691–4696.

    Article  PubMed  CAS  Google Scholar 

  • Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim TH, Santiago J, Flexas J, Schroeder JI and Rodriguez PL (2009) Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol. 150: 1345–1355.

    Article  PubMed  CAS  Google Scholar 

  • Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O and Rodriguez PL (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J. 37: 354–369.

    Article  PubMed  CAS  Google Scholar 

  • Saez A, Robert N, Maktabi MH, Schroeder JI, Serrano R and Rodriguez PL (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiol. 141: 1389–1399.

    Article  PubMed  CAS  Google Scholar 

  • Saez A, Rodrigues A, Santiago J, Rubio S and Rodriguez PL (2008) HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant Cell 20: 2972–2988.

    Article  PubMed  CAS  Google Scholar 

  • Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL and Marquez JA (2009a) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462: 665–668.

    Article  PubMed  CAS  Google Scholar 

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Marquez JA, Cutler SR and Rodriguez PL (2009b) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J. 60: 575–588.

    Article  PubMed  CAS  Google Scholar 

  • Schrick K, Nguyen D, Karlowski WM and Mayer KF (2004) START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors. Genome Biol. 5: R41.

    Article  PubMed  Google Scholar 

  • Schroeder JI and Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Viciafaba guard cells. Nature 338: 427–430.

    Article  Google Scholar 

  • Schroeder JI and Keller BU (1992) Two types of anion channel currents in guard cells with distinct voltage regulation. Proc. Natl. Acad. Sci. USA 89: 5025–5029.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Kwak JM and Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410: 327–330.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Raschke K and Neher E (1987) Voltage dependence of K channels in guard-cell protoplasts. Proc. Natl. Acad. Sci. USA 84: 4108–4112.

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer A, Hirt H and Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci. 9: 236–243.

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1998) Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc. Natl. Acad. Sci. USA 95: 975–980.

    Article  PubMed  CAS  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, et al. (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443: 823–826.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K and Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217–223.

    PubMed  CAS  Google Scholar 

  • Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J and Merlot S (2010) The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5: e13935.

    Article  PubMed  CAS  Google Scholar 

  • Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A and Grill E (2010) Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J. 61: 25–35.

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Flors V and Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14: 310–317.

    Article  PubMed  CAS  Google Scholar 

  • Ton J and Mauch-Mani B (2004) Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 38: 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T and Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl. Acad. Sci. USA 106: 17588–17593.

    Article  PubMed  CAS  Google Scholar 

  • Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, et al. (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatalsignalling. Nature 452: 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Lauriere C and Merlot S (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21: 3170–3184.

    Article  PubMed  CAS  Google Scholar 

  • Ward JM, Pei ZM and Schroeder JI (1995) Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7: 833–844.

    PubMed  CAS  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey NF and Leung J (2008) An update on abscisic acid signaling in plants and more. Mol. Plant. 1: 198–217.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson S and Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ. 25: 195–210.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson S and Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ. 33: 510–525.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K and Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57: 781–803.

    Article  PubMed  CAS  Google Scholar 

  • Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, Yan C, Li W, Wang J and Yan N (2009) Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat. Struct. Mol. Biol. 16: 1230–1236.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR and Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol. 43: 1473–1483.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F and Shinozaki K (2006a) The regulatory domain of SRK-2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281: 5310–5318.

    Google Scholar 

  • Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K and Hirayama T (2006b) ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol. 140: 115–126.

    Article  PubMed  CAS  Google Scholar 

  • Zhang DP, Chen SW, Peng YB and Shen YY (2001a) Abscisic acid-specific binding sites in the flesh of developing apple fruit. J. Exp. Bot. 52: 2097–2103.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW and Song CP (2001b) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Viciafaba. Plant Physiol. 126: 1438–1448.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Xu X, Crosley RA, Greenwalt SA, Sun Y, Blakeslee B, Wang L, Ni W, Sopko MS, Yao C, et al. (2010) The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol. 153: 99–113.

    CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247–273.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Chul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, C.W., Baek, W., Lim, S. et al. ABA signal transduction from ABA receptors to ion channels. Genes Genom 34, 345–353 (2012). https://doi.org/10.1007/s13258-012-0081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-012-0081-1

Keywords

Navigation