Skip to main content
Log in

Evaluation of output factors of different radiotherapy planning systems using Exradin W2 plastic scintillator detector

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This study aims to evaluate the output factors (OPF) of different radiation therapy planning systems (TPSs) using a plastic scintillator detector (PSD). The validation results for determining a practical field size for clinical use were verified. The implemented validation system was an Exradin W2 PSD. The focus was to validate the OPFs of the small irradiation fields of two modeled radiation TPSs using RayStation version 10.0.1 and Monaco version 5.51.10. The linear accelerator used for irradiation was a TrueBeam with three energies: 4, 6, and 10 MV. RayStation calculations showed that when the irradiation field size was reduced from 10 × 10 to 0.5 × 0.5 cm2, the results were within 2.0% of the measured values for all energies. Similarly, the values calculated using Monaco were within approximately 2.0% of the measured values for irradiation field sizes between 10 × 10 and 1.5 × 1.5 cm2 for all beam energies of interest. Thus, PSDs are effective validation tools for OPF calculations in TPS. A TPS modeled with the same source data has different minimum irradiation field sizes that can be calculated. These findings could aid in verification of equipment accuracy for treatment planning requiring highly accurate dose calculations and for third-party evaluation of OPF calculations for TPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding authors upon request.

References

  1. Das IJ, Ding GX, Ahnesjö A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys 35(1):206–215

    Article  PubMed  Google Scholar 

  2. Dieterich S, Sherouse GW (2011) Experimental comparison of seven commercial dosimetry diodes for measurement of stereotactic radiosurgery cone factors. Med Phys 38(7):4166–4173

    Article  PubMed  Google Scholar 

  3. Sánchez-Doblado F, Hartmann GH, Pena J, Roselló JV, Russiello G, Gonzalez-Castaño DM (2007) A new method for output factor determination in MLC shaped narrow beams. Phys Med 23(2):58–66

    Article  PubMed  Google Scholar 

  4. International Atomic Energy Agency (2017) Technical reports series, vol 483. International Atomic Energy Agency, Vienna

  5. Pasquino M, Stasi M, Mancosu P et al (2016) Dosimetric characterization of linac small beams using a plastic scintillator detector: a multicenter study. Phys Med 32:225–226

    Article  Google Scholar 

  6. Beierholm AR, Behrens CF, Andersen CE (2014) Dosimetric characterization of the Exradin W1 plastic scintillator detector through comparison with an in-house developed scintillator system. Radiat Meas 69:50–56

    Article  CAS  Google Scholar 

  7. Carrasco P, Jornet N, Jordi O et al (2015) Characterization of the Exradin W1 scintillator for use in radiotherapy. Med Phys 42(1):297–304

    Article  CAS  PubMed  Google Scholar 

  8. Dimitriadis A, Patallo IS, Billas I, Duane S, Nisbet A, Clark CH (2017) Characterisation of a plastic scintillation detector to be used in a multicentre stereotactic radiosurgery dosimetry audit. Radiat Phys Chem 140:373–378

    Article  CAS  Google Scholar 

  9. Galavis PE, Hu L, Holmes S, Das IJ (2019) Characterization of the plastic scintillation detector Exradin W2 for small field dosimetry. Med Phys 46(5):2468–2476

    Article  PubMed  Google Scholar 

  10. Jacqmin DJ, Miller JR, Barraclough BA, Labby ZE (2022) Commissioning an Exradin W2 plastic scintillation detector for clinical use in small radiation fields. J Appl Clin Med Phys 23(8):e13728

    Article  PubMed  PubMed Central  Google Scholar 

  11. Simiele EA, Dewerd LA (2018) Characterization of spectral and intensity changes with measurement geometry in various light guides used in scintillation dosimetry. Med Phys 45(7):3417–3428

    Article  CAS  PubMed  Google Scholar 

  12. Dufreneix S, Bellec J, Josset S, Vieillevigne L (2021) Field output factors for small fields: a large multicentre study. Phys Med 81:191–196

    Article  CAS  PubMed  Google Scholar 

  13. Lechner W, Wesolowska P, Azangwe G et al (2018) A multinational audit of small field output factors calculated by treatment planning systems used in radiotherapy. Phys Imaging Radiat Oncol 5:58–63

    Article  PubMed  PubMed Central  Google Scholar 

  14. Burke E, Poppinga D, Schönfeld AA et al (2017) The practical application of scintillation dosimetry in small-field photon-beam radiotherapy. Z Med Phys 27(4):324–333

    Article  PubMed  Google Scholar 

  15. Underwood TSA, Rowland BC, Ferrand R et al (2015) Application of the Exradin W1 scintillator to determine Ediode 60017 and microDiamond 60019 correction factors for relative dosimetry within small MV and FFF fields. Phys Med Biol 60(17):6669–6683

    Article  CAS  PubMed  Google Scholar 

  16. Papaconstadopoulos P, Tessier F, Seuntjens J (2014) On the correction, perturbation and modification of small field detectors in relative dosimetry. Phys Med Biol 59(19):5937–5952

    Article  CAS  PubMed  Google Scholar 

  17. Liu PZY, Suchowerska N, Lambert J et al (2011) Plastic scintillation dosimetry: comparison of three solutions for the Cerenkov challenge. Phys Med Biol 56(18):5805–5821

    Article  CAS  PubMed  Google Scholar 

  18. Guillot M, Gingras L, Archambault L et al (2011) Spectral method for the correction of the Cerenkov light effect in plastic scintillation detectors: a comparison study of calibration procedures and validation in Cerenkov light-dominated situations. Med Phys 38(4):2140–2150

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ando Y, Miki K, Araki J et al (2021) Verification system for intensity-modulated radiation therapy with scintillator. Phys Eng Sci Med 44(1):9–21

    Article  PubMed  Google Scholar 

  20. Okamura K, Akino Y, Inoue S et al (2022) Evaluation of calibration methods of Exradin W2 plastic scintillation detector for CyberKnife small-field dosimetry. Radiat Meas 156:106821

    Article  CAS  Google Scholar 

  21. Charles PH, Cranmer-Sargison G, Thwaites DI et al (2014) A practical and theoretical definition of very small field size for radiotherapy output factor measurements. Med Phys 41(4):041707

    Article  CAS  PubMed  Google Scholar 

  22. Tanny S, Sperling N, Parsai EI (2015) Correction factor measurements for multiple detectors used in small field dosimetry on the Varian Edge radiosurgery system. Med Phys 42(9):5370–5376

    Article  PubMed  Google Scholar 

  23. Mancosu P, Pasquino M, Reggiori G, Masi L, Russo S, Stasi M (2017) Dosimetric characterization of small fields using a plastic scintillator detector: a large multicenter study. Phys Med 41:33–38

    Article  PubMed  Google Scholar 

  24. Tadros Y, Rashed A, Abd-Elsattar M (2010) Study of the efficiency of pinpoint and semiflex chambers for measuring the smallest field size required for intensity-modulated radiotherapy (IMRT) technique. Alex J Med 46(2):135–140

    Google Scholar 

  25. Shimizu H, Sasaki K, Tanaka H et al (2020) Dosimetric effects of dose calculation grid size on the epidural space dose. Med Dosim 45(4):327–333

    Article  PubMed  Google Scholar 

  26. Snyder Karen CS, Liu M, Zhao B et al (2017) Investigating the dosimetric effects of grid size on dose calculation accuracy using volumetric modulated arc therapy in spine stereotactic radiosurgery. J Radiosurg SBRT 4(4):303–313

    PubMed  PubMed Central  Google Scholar 

  27. Francescon P, Beddar S, Satariano N et al (2014) Variation of k Q clin, Q msr f clin, f msr for the small-field dosimetric parameters percentage depth dose, tissue–maximum ratio, and off–axis ratio. Med Phys 41(10):101708

    Article  PubMed  PubMed Central  Google Scholar 

  28. Palmans H, Andreo P, Huq MS et al (2018) Dosimetry of small static fields used in external photon beam radiotherapy: summary of TRS-483, the IAEA–AAPM international Code of Practice for reference and relative dose determination. Med Phys 45(11):e1123–e1145

    Article  PubMed  Google Scholar 

  29. Liu M, Snyder K, Zhao B et al (2015) SU-E-T-487: in VMAT of spine stereotactic radiosurgery a 1-mm grid size increases dose gradient and lowers cord dose significantly relative to a 2.5-mm grid size. Med Phys 42:3446–3446

    Article  Google Scholar 

  30. Goodal SK, Rowshanfarzad P, Ebert MA (2023) Correction factors for commissioning and patient specific quality assurance of stereotactic fields in a Monte Carlo based treatment planning system: TPS correction factors. Phys Eng Sci Med 46(2):735–745

    Article  Google Scholar 

Download references

Acknowledgements

We express our appreciation to Yoshiki Yamaguchi, Minoru Nakao, Ryota Tonozuka, Tomoyuki Kurosawa, and Takeshi Yoshida for their support and valuable advice, which contributed to the smooth process of this study.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Yoshinori Tanabe, Masahiro Okada, and Natsuko Matsumoto. The first draft of the manuscript was written by Yasuharu Ando, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yoshinori Tanabe.

Ethics declarations

Competing interests

The authors have no conflicts of interest to disclose.

Ethical approval

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, Y., Okada, M., Matsumoto, N. et al. Evaluation of output factors of different radiotherapy planning systems using Exradin W2 plastic scintillator detector. Phys Eng Sci Med (2024). https://doi.org/10.1007/s13246-024-01438-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13246-024-01438-5

Keywords

Navigation