Skip to main content
Log in

Phantom study of layered sensor module for photon-counting BMD detector

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In this study, we perform bone mineral density (BMD) calculation by designing a layered sensor module (LSM) that divides high- and low-energy spectra from a single shot of X-rays. Gamma-ray evaluation supports this mechanism; low-energy gamma rays are absorbed in the front detector, whereas high-energy gamma rays are absorbed in the rear detector. In this phantom study, LSM divides a single shot of X-ray into two spectra with different distributions of energy, thereby affording X-ray images with different properties, such as contrast and gray scale. The region of interest (ROI) is classified by the Prewitt operator to sort the pixels for BMD calculation or Rs value. The calculated final value is 1.2051 g/cm2 with a standard deviation (SD) of 0.3690 g/cm2, as obtained from our previous study. An improved SD results from the layered structure with two channels for signal processing, the introduction of Rs value, and the use of Prewitt filter to sort reliable data. Overall, this study displays the feasibility of LSM for BMD calculation with a small error, thereby enabling the diagnosis of osteoporosis with novel mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kanis JA, Johnell O, Oden A (2008) FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397. https://doi.org/10.1007/s00198-007-0543-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int 17(12):1726–1733. https://doi.org/10.1007/s00198-006-0172-4

    Article  CAS  PubMed  Google Scholar 

  3. Compston JE, McClung MR, Leslie WD (2019) Osteoporos Lancet 393(10169):364–376. https://doi.org/10.1016/S0140-6736(18)32112-3

    Article  CAS  Google Scholar 

  4. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO Study Group. World Health Organization, Geneva

    Google Scholar 

  5. National Osteoporosis Foundation (2014) Clinician’s guide to prevention and treatment of osteoporosis. National Osteoporosis Foundation, Washington, DC

    Google Scholar 

  6. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24(1):23–57. https://doi.org/10.1007/s00198-012-2074-y

    Article  CAS  PubMed  Google Scholar 

  7. Watts NB (2018) Diagnosis and management of osteoporosis in the older individual. Clin Geriatr Med 34(2):147–157. https://doi.org/10.1016/j.cger.2017.12.002

    Article  Google Scholar 

  8. Lewiecki EM (2016) Role of bone mineral density in the diagnosis and treatment of osteoporosis. Rheum Dis Clin N Am 42(4):567–581. https://doi.org/10.1016/j.rdc.2016.05.009

    Article  Google Scholar 

  9. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo Assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocr Metab 90(12):6508–6515. https://doi.org/10.1210/jc.2005-1258

    Article  CAS  PubMed  Google Scholar 

  10. Guglielmi G, Taibi A (2014) DXA: technical aspects and application. Eur J Radiol 83(3):457–468. https://doi.org/10.1016/j.ejrad.2013.07.026

    Article  Google Scholar 

  11. Lee SH, Yun YH, Lee YK, Kim HN, Kim HJ (2017) Recent advances in the measurement of bone quality in osteoporosis. J Menopausal Med 23(3):139–145. https://doi.org/10.6118/jmm.2017.23.3.139

    Article  Google Scholar 

  12. Link TM (2017) Osteoporosis imaging: state of the art and advanced imaging. Radiology 284(3):639–663. https://doi.org/10.1148/radiol.2017161494

    Article  Google Scholar 

  13. Pothuaud L, Barthe N, Krieg MA, Mehsen N (2009) Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom 12(2):170–176. https://doi.org/10.1016/j.jocd.2008.07.007

    Article  PubMed  Google Scholar 

  14. Scheiber C, Giakos GC (2001) Medical applications of CdTe and CdZnTe detectors. Nucl Instrum Method A 258(1–2):12–25. https://doi.org/10.1016/S0168-9002(00)01032-9

    Article  Google Scholar 

  15. Fukuda M, Asano T, Tsuji Y, Uchida K, Yamashita Y (2011) Development of CdTe detectors for medical imaging and security applications. Nucl Instrum Method A 652(1):327–329. https://doi.org/10.1016/j.nima.2010.09.189

    Article  Google Scholar 

  16. Kawabata Y, Takahashi Y, Kitamura K, Kasai M, Aono H, Harada M (2005) High-energy-resolution CdTe detectors for X-Ray and Gamma-Ray Spectroscopy. Nucl Instrum Method A 546(1–2):176–180. https://doi.org/10.1016/j.nima.2005.03.058

    Article  CAS  Google Scholar 

  17. Seller P, Cernik R, Cernik RJ, Pani S, Mettivier G (2009) Radiation Hardness and Stability of CdTe detectors. Nucl Instrum Method A 607(3):577–581. https://doi.org/10.1016/j.nima.2009.05.090

    Article  CAS  Google Scholar 

  18. Narayanan M, Pretorius PH (2012) CdTe detectors for medical imaging applications: advances and Limitations. Semin Nucl Med 42(3):176–188. https://doi.org/10.1053/j.semnuclmed.2011.11.006

    Article  Google Scholar 

  19. Schlesinger TE (1995) Semiconductors for room temperature nuclear detector applications. Semicond Semimetals 43:240. https://doi.org/10.19009/jjacg.27.2_60

    Article  Google Scholar 

  20. Szeles C (2004) CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys Status Solidi B 241(3):783–790. https://doi.org/10.1002/pssb.200304296

    Article  Google Scholar 

  21. Sordo SD, Abbebe L, Caroli E, Mancini AM, Zappettini A, Ubertini P (2009) Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9(05):3491–3526. https://doi.org/10.3390/s90503491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takahashi T, Watanabe S (2001) Recent progress in CdTe and CdZnTe detectors. IEEE T Nucl Sci 48(4):950–959. https://doi.org/10.1109/23.958705

    Article  CAS  Google Scholar 

  23. Takahashi T, Mintani T, Kobayashi Y, Kouda M, Sato G, Watanabe S, Nakazawa K, Okada Y, Funaki M, Ohno R (2002) High-resolution Schottky CdTe diode detector. IEEE T Nucl Sci 49(3):1297–1303. https://doi.org/10.1109/TNS.2002.1039655

    Article  CAS  Google Scholar 

  24. Takahashi T, Watanabe S, Kouda M, Sato G, Okada Y, Kubo S, Kuroda Y, Onishi M, Ohno R (2001) High-resolution CdTe detector and applications to imaging devices. IEEE T Nucl Sci 48(3):287–291. https://doi.org/10.1109/23.940067

    Article  CAS  Google Scholar 

  25. Kim K, Cho S, Suh J, Hong J, Kim S (2009) Gamma-ray response of semi-insulating CdMnTe crystals. IEEE T Nucl Sci 56(3):858–862. https://doi.org/10.1109/TNS.2009.2015662

    Article  CAS  Google Scholar 

  26. Roy UN, Camarda GS, Cui Y, Cul R, Hossain A, Yang G, Zazvorka J, Dedic V, Franc J, James RB (2019) Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Sci Rep 9(1):1–7. https://doi.org/10.1038/s41598-018-38188-w

    Article  CAS  Google Scholar 

  27. Roy UN, Camarda GS, Cui Y, Gul R, Yang G, Zazvorka J, Dedic V, Franc J, James RB (2019) Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Sci Rep 9(1):1–7. https://doi.org/10.1038/s41598-019-43778-3

    Article  CAS  Google Scholar 

  28. Gul R, Roy UN, Egarievwe SU, Bolotnikov AE, Camarda GS, Cui Y, Hossain A, Yang G, James RB (2016) Point defects: their influence on electron trapping, resistivity, and electron mobility-lifetime product in CdTexSe1–x detectors. J Appl Phys 119(2):025702. https://doi.org/10.1063/1.4939647

    Article  CAS  Google Scholar 

  29. Hwang S, Yu H, Bolotnikov AE, James RB, Kim K (2019) Anomalous Te inclusion size and distribution in CdZnTeSe. IEEE T Nucl Sci 66(11):2329–2332. https://doi.org/10.1109/TNS.2019.2944969

    Article  CAS  Google Scholar 

  30. Park B, Kim Y, Seo J, Byun J, Dedic V, Franc Y, Boltnikov AE, James RB, Kim K (2022) Bandgap engineering of Cd1 – xZnxTe1–ySey (0 < x < 0.27, 0 < y < 0.026). Nucl Instrum Method A 1036(1):166836. https://doi.org/10.1016/j.nima.2022.166836

    Article  CAS  Google Scholar 

  31. Byun J, Seo J, Seo J, Park B (2022) Growth and characterization of detector-grade CdMnTeSe. Nucl Eng Technol 54(11):4215–4219. https://doi.org/10.1016/j.net.2022.06.007

    Article  CAS  Google Scholar 

  32. He Z (2001) Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl Imtrum Method A 463(1–2):250–267. https://doi.org/10.1016/S0168-9002(01)00223-6

    Article  CAS  Google Scholar 

  33. McGregor DS, He Z, Seifert HA, Rojeski RA, Wehe DK (1998) CdZnTe semiconductor parallel strip Frisch grid radiation detectors. IEEE T Nucl Sci 45(3):443–449. https://doi.org/10.1109/23.682424

    Article  CAS  Google Scholar 

  34. Kim Y, Lee W (2020) Development of a virtual Frisch-grid CZT detector based on the array structure. J Radiat Prot Res 45(1):35–44. https://doi.org/10.14407/jrpr.2020.45.1.35

    Article  Google Scholar 

  35. Luke PN (1994) Single-polarity charge sensing in ionization detectors using coplanar electrodes. Appl Phys Lett 65(22):2884–2886. https://doi.org/10.1063/1.112523

    Article  CAS  Google Scholar 

  36. He Z, Li W, Knoll GF, Wehe DK, Berry J, Stahle CM (1999) 3-D position sensitive CdZnTe gamma-ray spectrometers. Nucl Instrum Method A 422(1–3):173–178. https://doi.org/10.1016/S0168-9002(98)00950-4

    Article  CAS  Google Scholar 

  37. Szeles C, Bale D, Grosholz J, Smith GL, Blostrin M, Eger J (2006) Fabrication of high-performance CdZnTe quasi-hemispherical gamma-ray CAPture plus detectors. P Soc Photo-opt Ins 631909. https://doi.org/10.1117/12.683552

  38. Du YF, He Z, Knoll GF, Wehe DK, Li W (2001) Evaluation of a Compton scattering camera using 3-D position sensitive CdZnTe detectors. Nucl Instrum Method A 457(1–2):203–211. https://doi.org/10.1016/S0168-9002(00)00669-0

    Article  CAS  Google Scholar 

  39. Byun J, Seo J, Kim Y, Park J, Shin K, Lee W, Lee K, Kim K, Park B (2023) Monte-Carlo simulation for detecting neutron and gamma-ray simultaneously with CdZnTe half-covered by gadolinium film. Nucl Eng Technol 55(3):1031–1035. https://doi.org/10.1016/j.net.2022.11.002

    Article  CAS  Google Scholar 

  40. Miyake A, Nishioka T, Singh S, Morii H, Mimura H, Aoki T (2011) A CdTe detector with a gd converter for thermal neutron detection. Nucl Instrum Method A 654(1):390–393. https://doi.org/10.1016/j.nima.2011.06.083

    Article  CAS  Google Scholar 

  41. Verger L, Gentet MC, Gerfault L, Guillemaud R, Mestais C, Monnet O, Montemont G, Petroz G, Rostaing JP, Rustique J (2004) Performance and perspectives of a CdZnTe-based gamma camera for medical imaging. IEEE T Nucl Sci 51(6):3111–3117. https://doi.org/10.1109/TNS.2004.839070

    Article  CAS  Google Scholar 

  42. Flohr T, Petersilka M, Henning A, Ulzheimer S, Ferda J, Schmidt B (2020) Photon-counting CT review. Phys Med 79:126–136. https://doi.org/10.1016/j.ejmp.2020.10.030

    Article  PubMed  Google Scholar 

  43. Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D (2018) Photon-counting CT: technical principles and clinical prospects. Radiology 289(2):293–312. https://doi.org/10.1148/radiol.2018172656

    Article  PubMed  Google Scholar 

  44. Nord RH, Homuth JR, Hanson JA, Mazess RB (2000) Evaluation of a new DXA fan-beam instrument for measuring body composition. Ann Ny Acad Sci 904(1):118–125. https://doi.org/10.1111/j.1749-6632.2000.tb06433.x

    Article  CAS  PubMed  Google Scholar 

  45. Byun J, Kim Y, Seo J, Kim E, Kim K, Jo A, Lee W, Park B (2023) Development and evaluation of photon-counting Cd0.875Zn0.125Te0.98Se0.02 detector for measuring bone mineral density. Phys Eng Sci Med 46:245–253. https://doi.org/10.1007/s13246-022-01213-4

    Article  CAS  PubMed  Google Scholar 

  46. Han JC, Kim HK, Kim DW, Yun S, Youn H, Kam S, Tanguay J, Cunningham IA (2014) Single-shot dual-energy x-ray imaging with a flat-panel sandwich detector for preclinical imaging. Curr Appl Phys 14(12):1734–1742. https://doi.org/10.1016/j.cap.2014.10.012

    Article  Google Scholar 

  47. Wear J, Buchholz M, Payne RK, Gorsuch D, Bisek J, Ergun DL, Grosholz J, Falk R (2000) CZT detector for dual-energy x-ray absorptiometry (DEXA). Penetrating Radiation Systems and Applications II 4142. https://doi.org/10.1117/12.410561

  48. Lee SK, Kim K, Kim J (2019) Design of layered CdZnTe sensor for X-ray Absorptiometry via Monte Carlo N-Particle Simulations. J Korean Phys Soc 75:337–343. https://doi.org/10.3938/jkps.75.337

    Article  CAS  Google Scholar 

  49. Wright GW, James RB, Chinn D, Brunett BA, Olsen RW, Scyoclll JMV, Clift WM, Burger A, Chattopadhyay K, Shi DT, Wingfield RC (2000) Evaluation of NH4F/H2O2 effectiveness as a surface passivation agent for Cd1 – xZnxTe crystals. Hard X-Ray, Gamma-Ray, and Neutron detector physics. II:4141. https://doi.org/10.1117/12.407594

  50. Kim KH, Tappero R, Bolotnikov AE, Hossain A, Yang G, James RB, Fochuk P (2015) Long-term stability of ammonium-sulfide-and ammonium-fluoride-passivated CdMnTe detectors. J Korean Phys Soc 66:1532–1536. https://doi.org/10.3938/jkps.66.1532

    Article  CAS  Google Scholar 

  51. Prewitt JMS (1970) Object enhancement and extraction. Picture Process Psychopictorics 10(1):15–19

    Google Scholar 

  52. Canny J (1986) A computational approach to edge detection. IEEE T Pattern Analysis 6:679–698. https://doi.org/10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  53. International Atomic Energy Agency (2011) Dual energy X ray absorptiometry for bone mineral density and body composition assessment: IAEA Human Health Series No. 15. International Atomic Energy Agency

  54. https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients

  55. Mandal KC, Kang SH, Choi M, Kargar A, Harrison MJ, McGregor DS, Bolotnikov AE, Carini GA, Camarda GC, James RB (2007) Characterization of low-defect Cd0.9Zn0.1Te and CdTe crystals for high-performance Frisch Collar detectors. IEEE T Nucl Sci 54(4):802–806. https://doi.org/10.1109/TNS.2007.902371

    Article  CAS  Google Scholar 

  56. Egarievwe SU, Chen KT, Burger A, James RB, Lisse CM (1996) Detection and Electrical Properties of Cd1–xZnxTe detectors at elevated temperatures. J X-Ray Sci Technol 6(4):309–315. https://doi.org/10.3233/XST-1996-6401

    Article  CAS  Google Scholar 

  57. Iniewski K (2014) CZT detector technology for medical imaging. J Instrum 9(11):C11001. https://doi.org/10.1088/1748-0221/9/11/C11001

  58. Kim J, Kim DW, Kim SH, Yun S, Youn H, Jeon H, Kim HK (2017) Linear modeling of single-shot dual-energy x-ray imaging using a sandwich detector. J Instrum 12(01):C01029. https://doi.org/10.1088/1748-0221/12/01/C01029

  59. Yun S, Han JC, Kim DW, Youn HM, Kim HK, Tanguay J, Cunningham IA (2014) Feasibility of active sandwich detectors for single-shot dual-energy imaging. Med Imaging 2014: Phys Med Imaging 9033:90335T. https://doi.org/10.1117/12.2043368

    Article  Google Scholar 

  60. Jakubek J (2007) Data processing and image reconstruction methods for pixel detectors. Nucl Instrum Method A 576(1):223–234. https://doi.org/10.1016/j.nima.2007.01.157

    Article  CAS  Google Scholar 

  61. Juntunen MAK, Inkinen SI, Ketola JH, Kouiaho A, Kauppinen M, Winkler A, Nieminen MT (2019) Framework for photon counting quantitative material decomposition. IEEE T Med Imaging 39(1):35–47. https://doi.org/10.1109/TMI.2019.2914370

    Article  Google Scholar 

  62. Vavrik D, Holy T, Jakubek J, Pospisil S, Vykydal Z, Dammer J (2006) Direct thickness calibration: way to radiographic study of soft tissues. Astropart Part Space 773–778. https://doi.org/10.1142/9789812773678_0122

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2022-00165164) and by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20214000000070, Promoting of expert for energy industry advancement in the field of radiation technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beomjun Park.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, J., Kim, Y., Seo, J. et al. Phantom study of layered sensor module for photon-counting BMD detector. Phys Eng Sci Med 46, 1553–1562 (2023). https://doi.org/10.1007/s13246-023-01319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-023-01319-3

Keywords

Navigation