Skip to main content
Log in

Instruments to assess and measure personal and environmental radiofrequency-electromagnetic field exposures

  • Review
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Radiofrequency-electromagnetic field (RF-EMF) exposure of human populations is increasing due to the widespread use of mobile phones and other telecommunication and broadcasting technologies. There are ongoing concerns about potential short- and long-term public health consequences from RF-EMF exposures. To elucidate the RF-EMF exposure-effect relationships, an objective evaluation of the exposures with robust assessment tools is necessary. This review discusses and compares currently available RF-EMF exposure assessment instruments, which can be used in human epidemiological studies. Quantitative assessment instruments are either mobile phone-based (apps/software-modified and hardware-modified) or exposimeters. Each of these tool has its usefulness and limitations. Our review suggests that assessment of RF-EMF exposures can be improved by using these tools compared to the proxy measures of exposure (e.g. questionnaires and billing records). This in turn, could be used to help increase knowledge about RF-EMF exposure induced health effects in human populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vecchia P, Matthes R, Ziegelberger G et al (2009) Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz–300 GHz). International Commission on Non-Ionizing Radiation Protection (Oberschleissheim, Germany)

  2. Markov M, Grigoriev YG (2013) Wi-Fi technology-an uncontrolled global experiment on the health of mankind. Electromagn Biol Med 32:200–208

    Article  PubMed  Google Scholar 

  3. Allen S (1991) Radiofrequency field measurements and hazard assessment. J Radiol Prot 11:49–62

    Article  Google Scholar 

  4. Miyakoshi J (2009) Cellular biology aspects of mobile phone radiation. In: Lin JC (ed) Advances in electromagnetic field in living systems: health effects of cell phone radiation, vol 5. Springer, New York, pp 1–33

    Chapter  Google Scholar 

  5. IEEE (2006) IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C95.1™-2005 (Revision of IEEE Std C95.1-1991)

  6. Berg-Beckhoff G, Blettner M, Kowall B et al (2009) Mobile phone base stations and adverse health effects: phase 2 of a cross-sectional study with measured radio frequency electromagnetic fields. Occup Environ Med 6:124–130

    Google Scholar 

  7. Ha M, Im H, Lee M, Kim HJ, Kim BC, Gimm YM, Pack JK (2007) Radio-frequency radiation exposure from AM radio transmitters and childhood leukemia and brain cancer. Am J Epidemiol 166(3):270–279

    Article  PubMed  Google Scholar 

  8. Redmayne M, Smith E, Abramson MJ (2013) The relationship between adolescents’ well-being and their wireless phone use: a cross-sectional study. Environ Health 12:90

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rothman KJ, Chou CK, Morgan R et al (1996) Assessment of cellular telephone and other radio frequency exposure for epidemiologic research. Epidemiology 7:291–298

    Article  CAS  PubMed  Google Scholar 

  10. Foster KR, Moulder JE (2013) Wi-Fi and health: review of current status of research. Health Phys 105:561–575

    Article  CAS  PubMed  Google Scholar 

  11. ICT Facts and Figures (2014) International Telecommunication Union Geneva 20, Switzerland. http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf. Accessed 17 August 2014

  12. Redmayne M (2013) New Zealand adolescents’ cellphone and cordless phone user-habits: are they at increased risk of brain tumours already? A cross-sectional study. Environ Health 12:5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hardell L, Carlberg M (2012) Use of mobile and cordless phones and survival of patients with glioma. Neuroepidemiology 40:101–108

    Article  PubMed  Google Scholar 

  14. Frei P, Mohler E, Neubauer G et al (2009) Temporal and spatial variability of personal exposure to radio frequency electromagnetic fields. Environ Res 109:779–785

    Article  CAS  PubMed  Google Scholar 

  15. Gajšek P, Ravazzani P, Wiart J et al (2013) Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz–6 GHz). J Expo Sci Environ Epidemiol 1–8

  16. Hardell L, Carlberg M, Hansson Mild K (2013) Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathophysiology 20:85–110

    Article  PubMed  Google Scholar 

  17. Interphone Study Group (2011) Acoustic neuroma risk in relation to mobile telephone use: results of the Interphone international case–control study. Cancer Epidemiol 35:453–464

    Article  Google Scholar 

  18. Benson VS, Pirie K, Schuz J et al (2013) Mobile phone use and risk of brain neoplasms and other cancers: prospective study. Int J Epidemiol 42:792–802

    Article  PubMed  Google Scholar 

  19. Coureau G, Bouvier G, Lebailly P et al (2014) Mobile phone use and brain tumours in the CERENAT case-control study. Occup Environ Med 71:514–522

    Article  PubMed  Google Scholar 

  20. Baan R, Grosse Y, Lauby-Secretan B et al (2011) Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol 12:624–626

    Article  PubMed  Google Scholar 

  21. Thomas S, Benke G, Dimitriadis C et al (2010) Use of mobile phones and changes in cognitive function in adolescents. Occup Environ Med 67:861–866

    Article  CAS  PubMed  Google Scholar 

  22. Divan HA, Kheifets L, Obel C et al (2012) Cell phone use and behavioural problems in young children. J Epidemiol Commun Health 66:524–529

    Article  Google Scholar 

  23. Abramson MJ, Benke GP, Dimitriadis C et al (2009) Mobile telephone use is associated with changes in cognitive function in young adolescents. Bioelectromagnetics 30:678–686

    Article  PubMed  Google Scholar 

  24. Havas M (2013) Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system. Rev Environ Health 28:75–84

    Article  PubMed  Google Scholar 

  25. Levitt BB, Lai H (2010) Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ Rev 18:369–395

    Article  Google Scholar 

  26. The World Health Organization (2005) Electromagnetic fields and public health. Electromagnetic hypersensitivity. http://www.who.int/peh-emf/publications/facts/fs296/en/. Accessed 25 October 2015

  27. Inyang I, Benke G, Mckenzie R et al (2008) Comparison of measuring instruments for radiofrequency radiation from mobile telephones in epidemiological studies: implications for exposure assessment. J Exposure Sci Environ Epidemiol 18:134–141

    Article  Google Scholar 

  28. Röösli M, Frei P, Bolte J et al (2010) Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol. Environ Health 9:23

    Article  PubMed  PubMed Central  Google Scholar 

  29. van Deventer E, van Rongen E, Saunders R (2011) WHO research agenda for radiofrequency fields. Bioelectromagnetics 32:417–421

    Article  PubMed  Google Scholar 

  30. Inyang I, Benke G, Morrissey J et al (2009) How well do adolescents recall use of mobile telephones? Results of a validation study. BMC Med Res Methodol 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  31. Repacholi MH, Lerchl A, Röösli M et al (2012) Systematic review of wireless phone use and brain cancer and other head tumors. Bioelectromagnetics 33:187–206

    Article  PubMed  Google Scholar 

  32. Frei P, Poulsen AH, Johansen C et al (2011) Use of mobile phones and risk of brain tumours: update of Danish cohort study. BMJ 343:d6387

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wiart J, Sarrebourse T, Varsier N et al (2014) Use of apps for collecting information for exposure assessment. Proc Joint Annual Meeting of the Bioelectromagnetics Society and European Bioelectromagnetics Association, CapeTown, South Africa, 8–13 June 2014

  34. Goedhart G, Vrijheid M, Wiart J et al (2015) Using software-modified smartphones to validate self-reported mobile phone use inyoung people: a pilot study. Bioelectromagnetics. doi:10.1002/bem.21931

    PubMed  Google Scholar 

  35. Tawkon (2014). http://tawkon.com/. Accessed 17 August 2014

  36. Cellraid Products (2014). http://cellraid.com/products.php#quantamonitor. Accessed 12 January 2015

  37. Berg G, Schuz J, Samkange-Zeeb F, Blettner M (2005) Assessment of radiofrequency exposure from cellular telephone daily use in an epidemiological study: German validation study of the international case–control study of cancers of the brain–Interphone–study. J Expo Anal Environ Epidemiol 15:217–224

    Article  PubMed  Google Scholar 

  38. Vrijheid M, Mann S, Vecchia P et al (2009) Determinants of mobile phone output power in a multinational study: implications for exposure assessment. Occup Environ Med 66:664–671

    Article  CAS  PubMed  Google Scholar 

  39. Inyang I, Benke G, McKenzie R et al (2009) Use of hardware modified phones for exposure assessment in health studies in Australia: verification of compliance with standards. Australas Phys Eng Sci Med 32:62–67

    Article  CAS  PubMed  Google Scholar 

  40. SATIMO (2014) Microwave Vision Group (Courtaboeuf, France). http://www.satimo.com/content/products. Accessed 12 November 2014

  41. Maschek Electronik (2014) Maschek Electronik (Bad Wörishofen, Germany). http://www.maschek.de/de/. Accessed 12 November 2014

  42. Narda Safety Test Solutions (2014) Narda Safety Test Solutions (New York, USA). http://www.narda-sts.us/products_main.php. Accessed 12 November 2014

  43. Introducing ExpoM—A personal RF exposure meter (2014) Fields at Work GmbH (Zürich, Switzerland). http://www.fieldsatwork.ch/. Accessed 12 November 2014

  44. Thielens A, De Clercq H, Agneessens S et al (2013) Personal distributed exposimeter for radio frequency exposure assessment in real environments. Bioelectromagnetics 34:563–567

    Article  PubMed  Google Scholar 

  45. Thielens A, Vanveerdeghem P, Agneessens S et al. (2014) Whole-body Averaged SAR Assessment Using a Personal, Distributed Exposimeter. Proceedings of Joint Annual Meeting of the Bioelectromagnetics Society and European Bioelectromagnetics Association CapeTown, South Africa, 8–13 June 2014

  46. Urbinello D, Huss A, Beekhuizen J et al (2014) Use of portable exposure meters for comparing mobile phone base station radiation in different types of areas in the cities of Basel and Amsterdam. Sci Total Environ 468–469:1028–1033

    Article  PubMed  Google Scholar 

  47. Urbinello D, Röösli M (2013) Impact of one’s own mobile phone in stand-by mode on personal radiofrequency electromagnetic field exposure. J Expo Sci Environ Epidemiol 23:545–548

    Article  PubMed  Google Scholar 

  48. Juhász P, Bakos J, Nagy N et al (2011) RF personal exposimetry on employees of elementary schools, kindergartens and day nurseries as a proxy for child exposures. Prog Biophys Mol Biol 107:449–455

    Article  PubMed  Google Scholar 

  49. Thomas S, Kuhnlein A, Heinrich S et al (2008) Personal exposure to mobile phone frequencies and well-being in adults: a cross-sectional study based on dosimetry. Bioelectromagnetics 29:463–470

    Article  PubMed  Google Scholar 

  50. Cooper TG, Allen SG, Blackwell RP et al (2004) Assessment of occupational exposure to radiofrequency fields and radiation. Radiat Prot Dosimetry 111:191–203

    Article  CAS  PubMed  Google Scholar 

  51. Chauvin S, Gibergues ML, Wuthrich G et al (2009) Occupational exposure to ambient electromagnetic fields of technical operational personnel working for a mobile telephone operator. Radiat Prot Dosimetry 136:185–195

    Article  CAS  PubMed  Google Scholar 

  52. Roser K, Schoeni A, Bürgi A et al (2015) Development of an RF-EMF exposure surrogate for epidemiologic research. Int J Environ Res Public Health 12:5634–5656

    Article  PubMed  PubMed Central  Google Scholar 

  53. Thielens A, Agneessens S, De Clercq H et al (2015) On-body calibration and measurements using a personal, distributed exposimeter for wireless fidelity. Health Phys 108:407–418

    Article  CAS  PubMed  Google Scholar 

  54. Röösli M and Vienneau D (2014) Epidemiology of electromagnetic fields. In: Röösli M (ed). Epidemiological exposure assessment. CRC Press Taylor & Francis Company, pp 35–55

  55. Lin JC (2007) Dosimetric comparasion between different quantities for limiting exposure in the RF band: rationale and implications for guidelines. Health Phys 92:547–553

    Article  CAS  PubMed  Google Scholar 

  56. Gati A, Conil E, Wong M-F, Wiart J (2010) Duality between uplink local and downlink whole-body exposures in operating networks. IEEE Trans Electromagn Compat 52:829–836

    Article  Google Scholar 

  57. Frei P, Mohler E, Bürgi A et al (2010) Classification of personal exposure to radio frequency electromagnetic fields (RF-EMF) for epidemiological research: evaluation of different exposure assessment methods. Environ Int 36:714–720

    Article  PubMed  Google Scholar 

  58. Joseph W, Frei P, Röösli M et al (2012) Between-country comparison of whole-body SAR from personal exposure data in Urban areas. Bioelectromagnetics 33:682–694

    Article  PubMed  Google Scholar 

  59. Pearson S, Benameur A (2010) Privacy, security and trust issues arising from cloud Computing. Proceedings of cloud computing technology and science (CloudCom) 2010 IEEE 2nd international conference, Indianapolis, 30 November–3 December 2010

  60. Ardoino L, Barbieri E, Vecchia P (2004) Determinants of exposure to electromagnetic fields from mobile phones. Radiat Prot Dosim 111:403–406

    Article  Google Scholar 

  61. Vrijheid M, Cardis E, Armstrong BK et al (2006) Validation of short term recall of mobile phone use for the Interphone study. Occup Environ Med 63:237–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Erdreich LS, Van Kerkhove MD, Scrafford CG et al (2007) Factors that influence the radiofrequency power output of GSM mobile phones. Radiat Res 168:253–261

    Article  CAS  PubMed  Google Scholar 

  63. Kelsh MA, Shum M, Sheppard AR et al (2011) Measured radiofrequency exposure during various mobile-phone use scenarios. J Expo Sci Environ Epidemiol 21:343–354

    Article  PubMed  Google Scholar 

  64. Inyang I, Benke G, McKenzie R et al (2010) A new method to determine laterality of mobile telephone use in adolescents. Occup Environ Med 67:507–512

    Article  PubMed  Google Scholar 

  65. Thomas S, Kühnlein A, Heinrich S et al (2008) Exposure to mobile telecommunication networks assessed using personal dosimetry and well-being in children and adolescents: the German MobilEe-study. Environ Health 7:55

    Article  Google Scholar 

  66. Neubauer G, Cecil S, Giczi W et al (2008) Final Report on the project C2006-07: evaluation of the correlation between RF dosimeter reading and real human exposure ARC-IT-0218. http://www.emf.ethz.ch/archive/var/SB_Neubaue_pre25f.pdf. Accessed 12 December 2014

  67. Joseph W, Goeminne F, Vermeeren G et al (2012) Occupational and public field exposure from communication, navigation, and radar systems used for air traffic control. Health Phys 103:750–762

    Article  CAS  PubMed  Google Scholar 

  68. Singh S, Kapoor N (2015) Occupational EMF exposure from radar at X and Ku frequency band and plasma catecholamine levels. Bioelectromagnetics. doi:10.1002/bem.21925

    PubMed  Google Scholar 

  69. Bergqvist U, Friedrich G, Hamnerius Y, et al (2000) Mobile telecommunication base stations–exposure to electromagnetic fields. Report of a short term mission within COST-244bis

  70. Jokela K, Puranen L, Sihvonen AP (2004) Assessment of the magnetic field exposure due to the battery current of digital mobile phones. Health Phys 86:56–66

    Article  CAS  PubMed  Google Scholar 

  71. Calderón C, Addison D, Mee T et al (2014) Assessment of extremely low frequency magnetic field exposure from GSM mobile phones. Bioelectromagnetics 35:210–221

    Article  PubMed  Google Scholar 

  72. Redmayne M, Inyang I, Dimitriadis C et al (2010) Cordless telephone use: implications for mobile phone research. J Environ Monit 12:809–812

    Article  CAS  PubMed  Google Scholar 

  73. Guxens M, van Eijsden M, Vermeulen R et al (2013) Maternal cell phone and cordless phone use during pregnancy and behaviour problems in 5-year-old children. J Epidemiol Community Health 67:432–438

    Article  PubMed  Google Scholar 

  74. Röösli M, Frei P, Mohler E et al (2008) Statistical analysis of personal radiofrequency electromagnetic field measurements with nondetects. Bioelectromagnetics 29:471–478

    Article  PubMed  Google Scholar 

  75. Bolte JF, van der Zande G, Kamer J (2011) Calibration and uncertainties in personal exposure measurements of radiofrequency electromagnetic fields. Bioelectromagnetics 32:652–663

    Article  PubMed  Google Scholar 

  76. Iskra S, McKenzie RJ, Cosic I (2011) Monte Carlo simulations of the electric field close to the body in realistic environments for application in personal radiofrequency dosimetry. Radiat Prot Dosimetry 147:517–527

    Article  CAS  PubMed  Google Scholar 

  77. Iskra S, McKenzie RJ, Cosic I (2010) Factors influencing uncertainty in measurement of electric fields close to the body in personal RF dosimetry. Radiat Prot Dosimetry 140:25–33

    Article  CAS  PubMed  Google Scholar 

  78. Knafl U, Lehmann H, Riederer M (2008) Electromagnetic field measurements using personal exposimeters. Bioelectromagnetics 29:160–162

    Article  PubMed  Google Scholar 

  79. Mann S (2010) Assessing personal exposures to environmental radiofrequency electromagnetic fields. CR Phys 11:541–555

    Article  CAS  Google Scholar 

  80. Thielens A, Agneessens S, Verloock L et al (2015) On-body calibration and processing for a combination of two radio-frequency personal exposimeters. Radiat Prot Dosimetry 163:58–69

    Article  PubMed  Google Scholar 

  81. Beekhuizen J, Vermeulen R, van Eijsden M et al (2014) Modelling indoor electromagnetic fields (EMF) from mobile phone base stations for epidemiological studies. Environ Int 67:22–26

    Article  CAS  PubMed  Google Scholar 

  82. Joseph W, Vermeeren G, Verloock L et al (2010) Estimation of whole-body SAR from electromagnetic fields using personal exposure meters. Bioelectromagnetics 31:286–295

    Article  PubMed  Google Scholar 

  83. Lauer O, Frei P, Gosselin MC et al (2013) Combining near- and far-field exposure for an organ-specific and whole-body RF-EMF proxy for epidemiological research: a reference case. Bioelectromagnetics 34:366–374

    Article  PubMed  Google Scholar 

  84. Iskra S, McKenzie R, Cosic I (2009) Absorption in human body at 900 MHz for oblique incidence of plane wave. Electron Lett 45:602–604

    Article  Google Scholar 

  85. Henderson S, Tjong L, Wijayasinghe D (2014) Survey of radiofrequency radiation levels across Melbourne. Proceedings of the 39th Australasian Radiation Protection Society Conference, Hobart, 26–29 June 2014

  86. Dürrenberger G, Fröhlich J, Röösli M et al (2014) EMF monitoring–concepts, activities, gaps and options. Int J Environ Res Public Health 11:9460–9479

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research project is supported by the Centre for Population Health Research on Electromagnetic Energy (PRESEE), School of Public Health and Preventive Medicine, Monash University. The centre is funded by a grant from the National Health and Medical Research Council, Australia. The authors would like to thank Bob Johnson, Narda Safety Test Solutions, New York, USA; Nicolas Doare, SATIMO, Courtaboeuf, France; Arno Thielens, Ghent University/iMinds, Ghent, Belgium; Marco Zahner, Fields at Work GmbH, Zürich, Switzerland, Pasi Niemi, Cellraid Oulunsalo, Finland, and Thierry Sarrebourse, Whist Lab, Institut Mines-Télécom/Orange, Paris, France, for sharing relevant technical information and granting permission to use the pictures of their respective products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chhavi Raj Bhatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, C.R., Redmayne, M., Abramson, M.J. et al. Instruments to assess and measure personal and environmental radiofrequency-electromagnetic field exposures. Australas Phys Eng Sci Med 39, 29–42 (2016). https://doi.org/10.1007/s13246-015-0412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0412-z

Keywords

Navigation