Skip to main content
Log in

Field size consistency of nominally matched linacs

  • Scientific Note
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Given that there is increasing recognition of the effect that sub-millimetre changes in collimator position can have on radiotherapy beam dosimetry, this study aimed to evaluate the potential variability in small field collimation that may exist between otherwise matched linacs. Field sizes and field output factors were measured using radiochromic film and an electron diode, for jaw- and MLC-collimated fields produced by eight dosimetrically matched Varian iX linacs (Varian Medical Systems, Palo Alto, USA). This study used nominal sizes from 0.6 × 0.6 to 10 × 10 cm2, for jaw-collimated fields, and from 1 × 1 to 10 × 10 cm2 for MLC-collimated fields, delivered from a zero (head up, beam directed vertically downward) gantry angle. Differences between the field sizes measured for the eight linacs exceeded the uncertainty of the film measurements and the repositioning uncertainty of the jaws and MLCs on one linac. The dimensions of fields defined by MLC leaves were more consistent between linacs, while also differing more from their nominal values than fields defined by orthogonal jaws. The field output factors measured for the different linacs generally increased with increasing measured field size for the nominal 0.6 × 0.6 to 1 × 1 cm2 fields, and became consistent between linacs for nominal field sizes of 2 × 2 cm2 and larger. The inclusion in radiotherapy treatment planning system beam data of small field output factors acquired in fields collimated by jaws (rather than the more-reproducible MLCs), associated with either the nominal or the measured field sizes, should be viewed with caution. The size and reproducibility of the fields (especially the small fields) used to acquire treatment planning data should be investigated thoroughly as part of the linac or planning system commissioning process. Further investigation of these issues, using different linac models, collimation systems and beam orientations, is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Taylor ML, Kron T, Franich RD (2011) A contemporary review of stereotactic radiotherapy: inherent dosimetric complexities and the potential for detriment. Acta Oncol 50(4):483–508

    Article  PubMed  Google Scholar 

  2. Das IJ, Ding GX, Ahnesjö A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys 35(1):206–215

    Article  PubMed  Google Scholar 

  3. Kairn T, Charles P H, Cranmer-Sargison G, Crowe S B, Langton C M, Thwaites D I , Trapp J V (2015) Clinical use of diodes and micro-chambers to obtain accurate small field output factor measurements. Australas Phys Eng Sci Med, 1–11. doi:10.1007/s13246-015-0334-9

  4. Cranmer-Sargison G, Weston S, Evans JA, Sidhu NP, Thwaites DI (2011) Implementing a newly proposed Monte Carlo based small field dosimetry formalism for a comprehensive set of diode detectors. Med Phys 38(12):6592–6602

    Article  CAS  PubMed  Google Scholar 

  5. Cranmer-Sargison G, Charles PH, Trapp JV, Thwaites DI (2013) A methodological approach to reporting corrected small field relative outputs. Radiother Oncol 109(3):350–355

    Article  PubMed  Google Scholar 

  6. Charles PH, Cranmer-Sargison G, Thwaites DI, Crowe SB, Kairn T, Knight RT, Kenny J, Langton CM, Trapp JV (2014) A practical and theoretical definition of very small field size for radiotherapy output factor measurements. Med Phys 41(4):041707

    Article  CAS  PubMed  Google Scholar 

  7. Das IJ, Cheng C-W, Watts RJ, Ahnesjö A, Gibbons J, Li XA, Lowenstein J, Mitra RK, Simon WE, Zhu TC (2008) Accelerator beam data commissioning equipment and procedures: report of the TG- 106 of the Therapy Physics Committee of the AAPM. Med Phys 35(9):4186–4215

    Article  PubMed  Google Scholar 

  8. Nath R, Biggs P J, Bova F J, Ling C C, Purdy J A, van de Geijn J, Weinhous M S (1994) AAPM Report No 47: AAPM Code of Practice for Radiotherapy Accelerators. American Association of Physicists in Medicine

  9. Klein EE, Harms WB, Low DA, Willcut V, Purdy JA (1995) Clinical implementation of a commercial multileaf collimator: dosimetry, networking, simulation, and quality assurance. Int J Radiat Oncol Biol Phys 33:1195–1208

    Article  CAS  PubMed  Google Scholar 

  10. Jordan J, Williams PC (1994) The design and performance characteristics of a multileaf collimator. Phys Med Biol 39:231–251

    Article  CAS  PubMed  Google Scholar 

  11. Boyer AL, Butler EB, DiPetrillo TA, Engler MJ, Fraass B, Grant W III, Ling C, Low DA, Mackie TR, Mohan R, Purdy JA, Roach M, Rosenman JG, Verhey LJ, Wong JW, Cumberlin RL, Stone H, Palta JR (2001) Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51(4):880–914

    Article  Google Scholar 

  12. Ling CC, Burman C, Chui CS, Kutcher GJ, Leibel SA, LoSasso T, Mohan R, Bortfeld T, Reinstein L, Spirou S, Wang XH, Wu Q, Zelefsky M, Fuks Z (1996) Conformal radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multileaf collimation. Int J Radiat Oncol Biol Phys 35(4):721–730

    Article  CAS  PubMed  Google Scholar 

  13. Boyer A, Biggs P, Galvin J, Klein E, LoSasso T, Low D, Mah K, Yu C (2001) AAPM report no. 72, Basic applications of multileaf collimators. Med Phys 36(9):4197–4212

    Google Scholar 

  14. Bridge P, Carmichael M-A, Brady C, Dry A (2013) A snapshot of radiation therapy techniques and technology in Queensland: an aid to mapping undergraduate curriculum. J Med Radiat Sci 60:25–34

    Article  PubMed Central  Google Scholar 

  15. Kung JH, Chen GTY (2000) Intensity modulated radiotherapy dose delivery error from radiation field offset inaccuracy. Med Phys 27(7):1617–1622

    Article  CAS  PubMed  Google Scholar 

  16. Sharpe MB, Miller BM, Yan D, Wong JW (2000) Monitor unit settings for intensity modulated beams delivered using a step-and-shoot approach. Med Phys 27(12):2719–2725

    Article  CAS  PubMed  Google Scholar 

  17. Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, Ping X, Ying X, Lei X, Cedric XY (2003) Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys 30(8):2089–2115

    Article  PubMed  Google Scholar 

  18. Institute of Physics and Engineering in Medicine (2007) Acceptance Testing and Commissioning of Linear Accelerators

  19. Millar M, Cramb J, Das R, Ackerly T, Brown G, Webb D (1997) Recommendations for the safe use of external beams and sealed brachytherapy sources in radiation oncology. Australas Phys Eng Sci Med 20(3):1–35

    Google Scholar 

  20. Baily N A, Loevinger R, Morton R F, Moyer R F, Purdy J A, Shalek R J, Wootton P, Wright K A. AAPM Report No 13: Physical aspects of quality assurance in radiation therapy. American Association of Physicists in Medicine

  21. Ezzell GA, Burmeister JA, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D, Molineu A, Palta JR, Ramsay CR, Salter BJ, Shi J, Xia P, Yue NJ, Xiao Y (2009) IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 36(11):5359–5373

    Article  PubMed  Google Scholar 

  22. Klein EE, Hanley J, Bayouth J, Yin F-F, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, Liu C (2009) Task Group 142 report: quality assurance of medical accelerators. Med Phys 36(9):4197–4212

    Article  PubMed  Google Scholar 

  23. Low DA, Sohn JW, Klein EE, Markman J, Mutic S (2001) Dempsey J F (2001) Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy. Med Phys 28:752–756

    Article  CAS  PubMed  Google Scholar 

  24. IAEA (2000) Absorbed dose determination in external beam radiotherapy. Technical REports Series No. 398. International Atomic Energy Agency

  25. Oliver CP, Butler DJ, Webb DV (2012) The Australian radiation protection and nuclear safety agency megavoltage photon thermoluminescence dosimetry postal audit service 20072010. Australas Phys Eng Sci Med 35(1):105–108

    Article  CAS  PubMed  Google Scholar 

  26. Dunn L, Lye J, Kenny J, Lehmann J, Williams I, Kron T (2013) Commissioning of optically stimulated luminescence dosimeters for use in radiotherapy. Radiat Meas 51:31–39

    Article  Google Scholar 

  27. Chui CS, Spirou S, LoSasso T (1996) Testing of dynamic multileaf collimation. Med Phys 23:635–641

    Article  CAS  PubMed  Google Scholar 

  28. McKerracher C, Thwaites DI (1999) Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition. Phys Med Biol 44(9):2143–2160

    Article  CAS  PubMed  Google Scholar 

  29. Griessbach I, Lapp M, Bohsung J, Gademann G, Harder D (2005) Dosimetric characteristics of a new unshielded silicon diode and its application in clinical photon and electron beams. Med Phys 32(12):3750–3754

    Article  PubMed  Google Scholar 

  30. Francescon P, Cora S, Satariano N (2011) Calculation of kQclin, Qmsrfclin, fmsr for several small detectors and for two linear accelerators using Monte Carlo simulations. Med Phys 38(12):6513–6527

    Article  CAS  PubMed  Google Scholar 

  31. Zhu XR, Allen JJ, Shi J, Simon WE (2000) Total scatter factors and tissue maximum ratios for small radiosurgery fields: comparison of diode detectors, a parallel-plate ion chamber, and radiographic film. Med Phys 27(3):472–477

    Article  CAS  PubMed  Google Scholar 

  32. Li S, Rashid A, He S, Djajaputra D (2004) A new approach in dose measurement and error analysis for narrow photon beams (beamlets) shaped by different multileaf collimators using a small detector. Med Phys 31(7):2020–2032

    Article  PubMed  Google Scholar 

  33. Deng J, Ma CM, Hai J, Nath R (2003) Commissioning 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning. Med Phys 30(12):3124–3134

    Article  PubMed  Google Scholar 

  34. Morales JE, Hill R, Crowe SB, Kairn T, Trapp JV (2014) A comparison of surface doses for very small field size X-ray beams: Monte Carlo calculations and radiochromic film measurements. Australas Phys Eng Sci Med 37(2):303–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Australian Research Council, the Wesley Research Institute, Premion (Genesis Cancer Care Queensland) and the Queensland University of Technology (QUT), through linkage Grant Number LP110100401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kairn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kairn, T., Asena, A., Charles, P.H. et al. Field size consistency of nominally matched linacs. Australas Phys Eng Sci Med 38, 289–297 (2015). https://doi.org/10.1007/s13246-015-0349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0349-2

Keywords

Navigation