Skip to main content
Log in

Investigation of source position uncertainties & balloon deformation in MammoSite brachytherapy on treatment effectiveness

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The MammoSite® breast high dose rate brachytherapy is used in treatment of early-stage breast cancer. The tumour bed volume is irradiated with high dose per fraction in a relatively small number of fractions. Uncertainties in the source positioning and MammoSite balloon deformation will alter the prescribed dose within the treated volume. They may also expose the normal tissues in balloon proximity to excessive dose. The purpose of this work is to explore the impact of these two uncertainties on the MammoSite dose distribution in the breast using dose volume histograms and Monte Carlo simulations. The Lyman–Kutcher and relative seriality models were employed to estimate the normal tissues complications associated with the MammoSite dose distributions. The tumour control probability was calculated using the Poisson model. This study gives low probabilities for developing heart and lung complications. The probability of complications of the skin and normal breast tissues depends on the location of the source inside the balloon and the volume receiving high dose. Incorrect source position and balloon deformation had significant effect on the prescribed dose within the treated volume. A 4 mm balloon deformation resulted in reduction of the tumour control probability by 24%. Monte Carlo calculations using EGSnrc showed that a deviation of the source by 1 mm caused approximately 7% dose reduction in the treated target volume at 1 cm from the balloon surface. In conclusion, accurate positioning of the 192Ir source at the balloon centre and minimal balloon deformation are critical for proper dose delivery with the MammoSite brachytherapy applicator. On the basis of this study, we suggest that the MammoSite treatment protocols should allow for a balloon deformation of ≤2 mm and a maximum source deviation of ≤1 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. World Health Organization (2006) http://www.who.int/cancer/en/

  2. Fisher B, Anderson S, Redmond CK, Wolmark N, Wickerham DL, Cronin WM (1995) Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med 333:1456–1461

    Article  CAS  PubMed  Google Scholar 

  3. Van Dongen J, Bartelink H, Fentiman I, Lerut T, Mignolet F, Olthuis G, van der Schueren E, Sylvester R, Winter J, van Zijl K (1992) Randomized clinical trial to assess the value of breast-conserving therapy in stage I and II breast cancer, EORTC 10801 trial. J Natl Cancer Inst Monogr 11:15–18

    PubMed  Google Scholar 

  4. van Dongen JA, Voogd AC, Fentiman IS, Legrand C, Sylvester RJ, Tong D, van der Schueren E, Helle PA, van Zijl K, Bartelink H (2000) Long-term results of a randomized trial comparing breast-conserving therapy with mastectomy: European Organization for Research and Treatment of Cancer 10801 trial. J Natl Cancer Inst 92:1143–1150

    Article  PubMed  Google Scholar 

  5. Dickler A, Kirk M, Choo J, His WC, Chu J, Dowlatshahi K, Francescatti D, Nguyen C (2004) Treatment volume and dose optimization of MammoSite breast brachytherapy applicator. Int J Radiat Oncol Biol Phys 59:469–474

    PubMed  Google Scholar 

  6. Edmundson GK, Vicini FA, Chen PY, Mitchell C, Martinez AA (2002) Dosimetric characteristics of the MammoSite RTS, a new breast brachytherapy applicator. Int J Radiat Oncol Biol Phys 52:1132–1139

    PubMed  Google Scholar 

  7. Kassas B, Mourtada F, Horton JL, Lane RG (2004) Contrast effects on dosimetry of a partial breast irradiation system. Med Phys 31:1976–1979

    Article  CAS  PubMed  Google Scholar 

  8. Kirk MC, His WC, Chu JC, Niu H, Hu Z, Bernard D, Dickler A, Nguyen C (2004) Dose perturbation induced by radiographic contrast inside brachytherapy balloon applicators. Med Phys 31:1219–1224

    Article  PubMed  Google Scholar 

  9. Vicini FA, Kestin LL, Goldstein NS (2004) Defining the clinical target volume for patients with early-stage breast cancer treated with lumpectomy and accelerated partial breast irradiation: a pathologic analysis. Int J Radiat Oncol Biol Phys 60:722–730

    Article  PubMed  Google Scholar 

  10. Bensaleh S, Bezak E, Borg M (2009) Review of MammoSite brachytherapy: advantages, disadvantages and clinical outcomes. Acta Oncol 48:487–494

    Article  CAS  PubMed  Google Scholar 

  11. Kawrakow I, Rogers DWO (2000) The EGSnrc code system: Monte Carlo simulation of electron and photon transport. Technical Report PIRS-701. National Research Council of Canada. http://www.irs.inms.nrc.ca/EGSnrc/pirs701.pdf

  12. Borg J, Rogers DWO (1999) Monte Carlo calculation of photon spectra in air from Ir-192 sources. National Research Council of Canada. http://www.irs.inms.nrc.ca/papers/PIRS629r/pirs629r.html

  13. Walters B, Kawrakow I, Rogers DWO (2005) DOSXYZnrc users manual. NRC Report PIRS (794)revB. http://www.irs.inms.nrc.ca/inms/irs/BEAM/user_manuals/pirs794/index.html

  14. Kawrakow I (2000) Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys 27:485–498

    Article  CAS  PubMed  Google Scholar 

  15. Borg J, Rogers DW (1999) Spectra and air-kerma strength for encapsulated 192Ir sources. Med Phys 26:2441–2444

    Article  CAS  PubMed  Google Scholar 

  16. Borg M, Yeoh E, Bochner M, Butters J, van Doorn T, Farshid G, Kollias J, Kotasek D, Gill G, Lim A, Olver I, Parnis F, Rush G (2007) Feasibility study on the MammoSite in early-stage breast cancer: initial experience. Australas Radiol 51:53–61

    Article  CAS  PubMed  Google Scholar 

  17. Dale RG (1985) The application of the linear-quadratic dose–effect equation to fractionated and protracted radiotherapy. Br J Radiol 58:515–528

    Article  CAS  PubMed  Google Scholar 

  18. Bentzen SM, Overgaard M (1991) Relationship between early and late normal-tissue injury after postmastectomy radiotherapy. Radiother Oncol 20:159–165

    Article  CAS  PubMed  Google Scholar 

  19. Bentzen SM, Saunders MI, Dische S (1999) Repair halftimes estimated from observations of treatment-related morbidity after CHART or conventional radiotherapy in head and neck cancer. Radiother Oncol 53:219–226

    Article  CAS  PubMed  Google Scholar 

  20. Turesson I, Thames HD (1989) Repair capacity and kinetics of human skin during fractionated radiotherapy: erythema, desquamation, and telangiectasia after 3 and 5 year’s follow-up. Radiother Oncol 15:169–188

    Article  CAS  PubMed  Google Scholar 

  21. Hall EJ (2000) Radiobiology for the radiologist, 5th edn. Williams & Wilkins, Philadelphia, pp 352–356

    Google Scholar 

  22. Nag S, Gupta N (2000) A simple method of obtaining equivalent doses for use in HDR brachytherapy. Int J Radiat Oncol Biol Phys 46:507–513

    Article  CAS  PubMed  Google Scholar 

  23. Lyman JT (1985) Complication probability as assessed from dose-volume histograms. Radiat Res Suppl 8:S13–S19

    Article  CAS  PubMed  Google Scholar 

  24. Kutcher GJ, Burman C (1989) Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys 16:1623–1630

    CAS  PubMed  Google Scholar 

  25. Alexander MA, Brooks WA, Blake SW (2007) Normal tissue complication probability modelling of tissue fibrosis following breast radiotherapy. Phys Med Biol 52:1831–1843

    Article  CAS  PubMed  Google Scholar 

  26. Burman C, Kutcher GJ, Emami B, Goitein M (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21:123–135

    CAS  PubMed  Google Scholar 

  27. Gagliardi G, Lax I, Ottolenghi A, Rutqvist L (1996) Long-term cardiac mortality after radiotherapy of breast cancer—application of the relative seriality model. Br J Radiol 69:839–846

    Article  CAS  PubMed  Google Scholar 

  28. Kwa SL, Lebesque JV, Theuws JC, Marks LB, Munley MT, Bentel G, Oetzel D, Spahn U, Graham MV, Drzymala RE, Purdy JA, Lichter AS, Martel MK, Ten Haken RK (1998) Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 42:1–9

    CAS  PubMed  Google Scholar 

  29. Steel GG (2002) Basic clinical radiology, 3rd edn. London, Arnold, p 34

    Google Scholar 

  30. Kallman P, Agren A, Brahme A (1992) Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol 62:249–262

    Article  CAS  PubMed  Google Scholar 

  31. Webb S, Nahum AE (1993) A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Phys Med Biol 38:653–666

    Article  CAS  PubMed  Google Scholar 

  32. Brenner DJ, Hall EJ (1991) Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys 20:181–190

    CAS  PubMed  Google Scholar 

  33. Dale RG (1989) Radiobiological assessment of permanent implants using tumour repopulation factors in the linear-quadratic model. Br J Radiol 62:241–244

    Article  CAS  PubMed  Google Scholar 

  34. Thames H (1985) An ‘incomplete-repair’ model for survival after fractionated and continuous irradiations. Int J Radiat Biol Relat Stud Phys Chem Med 47(3):319–339

    Article  CAS  PubMed  Google Scholar 

  35. Bovi J, Qi XS, White J, Li XA (2007) Comparison of three accelerated partial breast irradiation techniques: treatment effectiveness based upon biological models. Radiother Oncol 84:226–232

    Article  PubMed  Google Scholar 

  36. Fourquet A, Campana F, Mosseri V, Cetingoz R, Luciani S, Labib A, Asselain B, Vilcoq JR (1995) Iridium-192 versus cobalt-60 boost in 3–7 cm breast cancer treated by irradiation alone: final results of a randomized trial. Radiother Oncol 34:114–120

    Article  CAS  PubMed  Google Scholar 

  37. Guerrero M, Li XA (2003) Analysis of a large number of clinical studies for breast cancer radiotherapy: estimation of radiobiological parameters for treatment planning. Phys Med Biol 48:3307–3326

    Article  CAS  PubMed  Google Scholar 

  38. Haustermans K, Fowler J, Geboes K, Christiaens MR, Lerut A, van der Schueren E (1998) Relationship between potential doubling time (Tpot), labeling index and duration of DNA synthesis in 60 esophageal and 35 breast tumors: is it worthwhile to measure Tpot? Radiother Oncol 46:157–167

    Article  CAS  PubMed  Google Scholar 

  39. Benitez PR, Keisch ME, Vicini F, Stolier A, Scroggins T, Walker A, White J, Hedberg P, Hebert M, Arthur D, Zannis V, Quiet C, Streeter O, Silverstein M (2007) Five-year results: the initial clinical trial of MammoSite balloon brachytherapy for partial breast irradiation in early-stage breast cancer. Am J Surg 194:456–462

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bensaleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bensaleh, S., Bezak, E. Investigation of source position uncertainties & balloon deformation in MammoSite brachytherapy on treatment effectiveness. Australas Phys Eng Sci Med 33, 35–44 (2010). https://doi.org/10.1007/s13246-010-0008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-010-0008-6

Keywords

Navigation