Skip to main content
Log in

Semi-Automatic Reconstruction of Patient-Specific Stented Coronaries based on Data Assimilation and Computer Aided Design

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

The interplay between geometry and hemodynamics is a significant factor in the development of cardiovascular diseases. This is particularly true for stented coronary arteries. To elucidate this factor, an accurate patient-specific analysis requires the reconstruction of the geometry following the stent deployment for a computational fluid dynamics (CFD) investigation. The image-based reconstruction is troublesome for the different possible positions of the stent struts in the lumen and the coronary wall. However, the accurate inclusion of the stent footprint in the hemodynamic analysis is critical for detecting abnormal stress conditions and flow disturbances, particularly for thick struts like in bioresorbable scaffolds. Here, we present a novel reconstruction methodology that relies on Data Assimilation and Computer Aided Design.

Methods

The combination of the geometrical model of the undeployed stent and image-based data assimilated by a variational approach allows the highly automated reconstruction of the skeleton of the stent. A novel approach based on computational mechanics defines the map between the intravascular frame of reference (called L-view) and the 3D geometry retrieved from angiographies. Finally, the volumetric expansion of the stent skeleton needs to be self-intersection free for the successive CFD studies; this is obtained by using implicit representations based on the definition of Nef-polyhedra.

Results

We assessed our approach on a vessel phantom, with less than 10% difference (properly measured) vs. a customized manual (and longer) procedure previously published, yet with a significant higher level of automation and a shorter turnaround time. Computational hemodynamics results were even closer. We tested the approach on two patient-specific cases as well.

Conclusions

The method presented here has a high level of automation and excellent accuracy performances, so it can be used for larger studies involving patient-specific geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Availability of Data and Material

The codes developed specifically for this paper are under GPL Licence and will be available upon request to the corresponding author. Specifically: 1. Registration: The point-cloud-to-polyline registration was developed under the Matlab FAIR package obtained under permission of the authors. The availability of our solver is subject to the availability of FAIR. 2. Mapping: the FENICS code is available upon request 3. Volume Meshing: the code developed with OpenCASCADE (LGPL) and CGAL (GPL) are available upon request. The de-identified data used for benchmarking can be requested as well, consistently with the restrictions of the Clinical Trial NCT01751906.

Notes

  1. Deviations from rectilinear are induced by the catheter floating.

  2. To the best of the authors’ knowledge, the terminology that follows has not been used elsewhere.

  3. Here, we have no reason for introducing different parameters for the in-plane Cartesian coordinates x and y. A different coordinate system (e.g., polar) may require different parameters.

  4. When the stent does not have a circular cross-section, we intend here the diameter of the smallest pipe enclosing the stent.

  5. Notice that Nef-polyhedron are not restricted to convex polytopes.6

References

  1. Alnæs, M. S., J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells. The fenics project version 1.5. Arch. Numer. Softw. 3(100): 9–23, 2015.

    Google Scholar 

  2. Antiga, L., B. Ene-Iordache, and A. Remuzzi. Computational geometry for patient-specific reconstruction and meshing of blood vessels from mr and ct angiography. IEEE Trans. Med .Imaging 22(5): 674–684, 2003.

    PubMed  Google Scholar 

  3. Barash, P. G. Clinical Anesthesia. Philadelphia: Lippincott Williams & Wilkins, 2009.

    Google Scholar 

  4. Barquera, S., A. Pedroza-Tobías, C. Medina, L. Hernández-Barrera, K. Bibbins-Domingo, R. Lozano, and A. E. Moran. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch. Med. Res. 46(5): 328–338, 2015.

    PubMed  Google Scholar 

  5. Berger, M., Gostiaux, B.: Géométrie différentielle, variétés, courbes et surfaces. Press Universitaire de France (1987).

  6. Bieri, H: Nef polyhedra: a brief introduction. In: Geometric Modelling. Springer, 1995, pp. 43–60.

  7. Boissonnat, J. D., and Yvinec, M. Algorithmic geometry. Cambridge: Cambridge University Press, 1998.

    Google Scholar 

  8. Bridio, S. An Innovative Method For Automatic Image-based Patient-specific Stent Reconstruction For Computational Fluid Dynamics Analyses. Master’s thesis, Politecnico di Milano, Italy, 2018.

    Google Scholar 

  9. Campen, M., and L. Kobbelt. Polygonal boundary evaluation of minkowski sums and swept volumes. Eurographics Symp. Geom. Process. 29(2): 1613–1622, 2010.

    Google Scholar 

  10. Chiastra, C., G. Dubini, and F. Migliavacca. Hemodynamic perturbations due to the presence of stents. In: Biomechanics of Coronary Atherosclerotic Plaque. Amsterda: Elsevier, 2020.

  11. Chiastra, C., S. Migliori, F. Burzotta, G. Dubini, and F. Migliavacca. Patient-specific modeling of stented coronary arteries reconstructed from optical coherence tomography: Towards a widespread clinical use of fluid dynamics analyses. J. Cardiovasc. Transl. Res. 11: 156–172, 2017.

  12. Chiastra, C., E. Montin, M. Bologna, S. Migliori, C. Aurigemma, F. Burzotta, S. Celi, G. Dubini, F. Migliavacca, and L. Mainardi. Reconstruction of stented coronary arteries from optical coherence tomography images: feasibility, validation, and repeatability of a segmentation method. PLoS ONE 12(6): e0177495, 2017.

  13. Chiastra, C., S. Morlacchi, D. Gallo, U. Morbiducci, R. Cárdenes, I. Larrabide, and F. Migliavacca. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J. R. Soc. Interface 10(84): 20130193, 2013.

    PubMed  PubMed Central  Google Scholar 

  14. Chiastra, C., W. Wu, B. Dickerhoff, A. Aleiou, G. Dubini, H. Otake, F. Migliavacca, and J. F. LaDisa Jr. Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From oct and ct imaging to structural and hemodynamics analyses. J. Biomech. 49(11): 2102–2111, 2016.

    PubMed  Google Scholar 

  15. Cho, H. S., S. J. Jang, K. Kim, A. V. Dan-Chin-Yu, M. Shishkov, B. E. Bouma, and W. Y. Oh. High frame-rate intravascular optical frequency-domain imaging in vivo. Biomed. Opt. Express 5(1): 223–232, 2014.

    Google Scholar 

  16. Dey, T. K. Curve and Surface Reconstruction. Cambridge: Cambridge University Press, 2006.

    Google Scholar 

  17. Elliott, M. R., D. Kim, D. S. Molony, L. Morris, H. Samady, S. Joshi, and L. H. Timmins. Establishment of an automated algorithm utilizing optical coherence tomography and micro-computed tomography imaging to reconstruct the 3d deformed stent geometry. IEEE Trans. Med. Imaging, 2018.

  18. Ellwein, L. M., H. Otake, T. J. Gundert, B. K. Koo, T. Shinke, Y. Honda, J. Shite, and J. F. LaDisa. Optical coherence tomography for patient-specific 3d artery reconstruction and evaluation of wall shear stress in a left circumflex coronary artery. Cardiovasc. Eng. Technol. 2(3): 212, 2011.

    Google Scholar 

  19. Engl, H. W., M. Hanke, and A. Neubauer. Regularization of Inverse Problems, vol. 375. New York: Springer, 1996.

    Google Scholar 

  20. Formaggia, L., A. Quarteroni, and A. Veneziani. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, vol. 1. New York: Springer, 2010.

    Google Scholar 

  21. Geuzaine, C., and J. F. Remacle. Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79: 1309–1331, 2009.

    Google Scholar 

  22. Gogas, B. D., S. B. King, L. H. Timmins, T. Passerini, M. Piccinelli, A. Veneziani, S. Kim, D. S. Molony, D. P. Giddens, P. W. Serruys, et al. Biomechanical assessment of fully bioresorbable devices. JACC 6(7): 760–761, 2013.

    PubMed  Google Scholar 

  23. Gomes, A., I. Voiculescu, J. Jorge, B. Wyvill, and C. Galbraith. Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms. New York: Springer, 2009.

    Google Scholar 

  24. Ha, J.: Physical principles and equipment of intravascular optical coherence tomography. In: Coronary Imaging and Physiology. New York: Springer, 2018, pp. 97–106.

  25. Hachenberger, P., and L. Kettner. 3D boolean operations on nef polyhedra. In: CGAL User and Reference Manual, 4.13.2 edn. CGAL Editorial Board, 2019.

  26. Hachenberger, P., L. Kettner, and K. Mehlhorn. Boolean operations on 3d selective nef complexes: data structure, algorithms, optimized implementation and experiments. Comput. Geom. 38:, 64–99, 2007.

    Google Scholar 

  27. Jang, S. J., H. S. Park, J. W. Song, T. S. Kim, H. S. Cho, S. Kim, B. E. Bouma, J. W. Kim, and W. Y. Oh. Ecg-triggered, single cardiac cycle, high-speed, 3d, intracoronary oct. JACC 9(5): 623–625, 2016.

    PubMed  Google Scholar 

  28. Katwal, A. B., and J. J. Lopez. Technical considerations and practical guidance for intracoronary optical coherence tomography. Intravasc. Imaging 4: 239–250, 2015.

    Google Scholar 

  29. Kessler, W., W. Moshage, A. Galland, D. Zink, S. Achenbach, W. Nitz, G. Laub, and K. Bachmann. Assessment of coronary blood flow in humans using phase difference mr imaging. comparison with intracoronary doppler flow measurement. Int. J. Cardiac Imaging 14(3): 179–86, 1998.

  30. Kilic, Y., H. Safi, R. Bajaj, P. W. Serruys, P. Kitslaar, A. Ramasamy, V. Tufaro, Y. Onuma, A. Mathur, T. Torii, et al. The evolution of data fusion methodologies developed to reconstruct coronary artery geometry from intravascular imaging and coronary angiography data: a comprehensive review. Front. Cardiovasc. Med., 2020. https://doi.org/10.3389/fcvm.2020.00033.

  31. Lin, C. Y., A. Veneziani, and L. Ruthotto. Numerical methods for polyline-to-point-cloud registration with applications to patient-specific stent reconstruction. Int. J. Numer. Methods Biomed. Eng. 34(3): e2934, 2018.

  32. Loriot, S., J. Tournois, and I. O. Yaz. Polygon mesh processing. In: CGAL User and Reference Manual, 4.13.2 edn. CGAL Editorial Board, 2019.

  33. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. Jama 282(21): 2035–2042, 1999.

    CAS  PubMed  Google Scholar 

  34. Meakawa, T., N. Patrikalakis, T. Sakkalis, and G. Yu. Analysis and applications of pipe surfaces. Comput. Aided Des. Geom. Des. 15:437–458, 1998.

    Google Scholar 

  35. Migliori, S., C. Chiastra, M. Bologna, E. Montin, G. Dubini, C. Aurigemma, R. Fedele, F. Burzotta, L. Mainardi, and F. Migliavacca. A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images. Med. Eng. Phys. 47: 105–116, 2017.

    PubMed  Google Scholar 

  36. Migliori, S., C. Chiastra, M. Bologna, E. Montin, G. Dubini, L. Genuardi, C. Aurigemma, L. Mainardi, F. Burzotta, and F. Migliavacca.: Application of an oct-based 3d reconstruction framework to the hemodynamic assessment of an ulcerated coronary artery plaque. Med. Eng. Phys., 2020.

  37. Migliori, S., R. Rampat, M. Bologna, E. Montin, F. Burzotta, D. Hildick-Smith, G. Dubini, L. Mainardi, F. Migliavacca, J. Cockburn, et al. A patient-specific study investigating the relation between coronary hemodynamics and neo-intimal thickening after bifurcation stenting with a polymeric bioresorbable scaffold. Appli. Sci. 8(9), 1510, 2018.

    Google Scholar 

  38. Modersitzki, J. Numerical Methods for Image Registration. Oxford: Oxford University Press on Demand, 2004.

    Google Scholar 

  39. Modersitzki, J. FAIR: Flexible Algorithms for Image Registration, vol. 6. SIAM, 2009.

  40. Monge, G. Application de l’analyse a la Géométrie: a l’usage de l’École Impériale Polytechnique. Bernard, 1807.

  41. Myronenko, A., and X. Song. Point set registration: Coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12): 2262–2275, 2010.

    PubMed  Google Scholar 

  42. Nammas, W., J. M. Ligthart, A. Karanasos, K. T. Witberg, and E. Regar. Optical coherence tomography for evaluation of coronary stents in vivo. Expert Rev. Cardiovasc. Ther. 11(5): 577–588, 2013.

    CAS  PubMed  Google Scholar 

  43. Ng, J., C. V. Bourantas, R. Torii, H. Y. Ang, E. Tenekecioglu, P. W. Serruys, and N. Foin. Local hemodynamic forces after stenting: implications on restenosis and thrombosis. Arterioscler. Thromb. Vasc. Biol. 37(12): 2231–2242, 2017.

    CAS  PubMed  Google Scholar 

  44. O’Brien, C. C., K. Kolandaivelu, J. Brown, A. C. Lopes, M. Kunio, V. B. Kolachalama, and E. R. Edelman. Constraining oct with knowledge of device design enables high accuracy hemodynamic assessment of endovascular implants. PLoS ONE 11(2): e0149178, 2016. https://doi.org/10.1371/journal.pone.0149178.

  45. Phipps, J. E., T. Hoyt, D. L. Halaney, J. J. Mancuso, T. E. Milner, and M. D. Feldman. Intravascular oct imaging artifacts. In: Cardiovascular OCT Imaging. New York: Springer, pp. 67–79, 2015

  46. Prati, F., M. Jenkins, A. Di Giorgio, and A. Rollins. Intracoronary optical coherence tomography, basic theory and image acquisition techniques. Int. J. Cardiovasc. Imaging 27(2): 251–258, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sakamoto, A., H. Jinnouchi, S. Torii, R. Virmani, and A. Finn. Understanding the impact of stent and scaffold material and strut design on coronary artery thrombosis from the basic and clinical points of view. Bioengineering 5(3): 71, 2018.

    CAS  PubMed Central  Google Scholar 

  48. Samady, H., P. Eshtehardi, M. C. McDaniel, J. Suo, S. S. Dhawan, C. Maynard, L. H. Timmins, A. A. Quyyumi, and D. P. Giddens. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124: 779–788, 2011.

    CAS  PubMed  Google Scholar 

  49. Sangalli, L. M., P. Secchi, S. Vantini, and A. Veneziani. Efficient estimation of three-dimensional curves and their derivatives by free-knot regression splines, applied to the analysis of inner carotid artery centrelines. J. R. Stat. Soc. Ser. C 58(3): 285–306, 2009.

    Google Scholar 

  50. Schroeder, W. J., B. Lorensen, and K. Martin. The visualization toolkit: an object-oriented approach to 3D graphics. Kitware, 2004.

  51. Seong, J. K., G. Elber, and M. S. Kim. Trimming local and global self-intersections in offset curves/surfaces using distance maps. Comput. Aid. Des. 38:183–193, 2006.

    Google Scholar 

  52. Sethian, J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge: Cambridge University Press, 1999.

    Google Scholar 

  53. Tagliasacchi, A., T. Delame, M. Spagnuolo, N. Amenta, and A. Telea. 3d skeletons: a state-of-the-art report. Comput. Graph. Forum 35(2): 573–597, 2016.

  54. Viguerie, A., and A. Veneziani. Deconvolution-based stabilization of the incompressible navier-stokes equations. J. Comput. Phys. 391:226–242, 2019.

    Google Scholar 

  55. Villiger, M., J. Ren, N. Uribe-Patarroyo, B. E. Bouma. Future development. In: Cardiovascular OCT Imaging. New York: Springer, 2020, pp. 175–191.

  56. Wang, J., X. Jin, Y. Huang, X. Ran, D. Luo, D. Yang, D. Jia, K. Zhang, J. Tong, X. Deng, et al. Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis. Regener. Biomater. 5(3): 177–187, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, W., B. Jüttler, D. Zheng, and Y. Liu, Computation of rotation minimizing frames. ACM Trans. Graph. TOG 27(1), 1–18, 2008.

    Google Scholar 

  58. Wu, W., S. Samant, G. de Zwart, S. Zhao, B. Khan, M. Ahmad, M. Bologna, Y. Watanabe, Y. Murasato, F. Burzotta, F., et al. 3d reconstruction of coronary artery bifurcations from coronary angiography and optical coherence tomography: feasibility, validation, and reproducibility. Sci. Rep. 10(1): 1–11, 2020.

    Google Scholar 

  59. Wu, W., M. Sharzehee, S. Zhao, S. Samant, Y. Watanabe, Y. Murasato, T. Mickley, A. Bicek, R. Bliss, F. Burzotta, et al. 3d reconstruction of coronary artery stents from optical coherence tomography: Experimental validation and clinical feasibility. Sci. Rep. 11, 2021.

  60. Yang, B., M. Piccinelli, G. Esposito, T. Han, Y. Bouchi, B. Gogas, D. Giddens, H. Samady, and A. Veneziani. Patient-specific 3d volumetric reconstruction of bioresorbable stents: A method to generate 3d geometries for computational analysis of coronaries treated with bioresorbable stents. arXiv preprint arXiv:1810.03270, 2018.

Download references

Acknowledgments

The contribution of Boyi Yang and Gaetano Esposito (Emory University Hospital) to the early stages of this work is gratefully acknowledged. S. B. thanks the Department of Mathematics at Emory University for the hospitality. A.V., H.S., D.M. and A.L. thank Don Giddens for many fruitful discussions on the topics of the paper and suggestions when preparing the manuscripts. Habib Samady and David Molony are now with the Northeast Georgia Medical Center, 743 Spring Street Gainesville, GA 30501, USA.

Funding

Some of the computation were performed on XSEDE facilities (Stampede 2) under the NSF-XSEDE TG-ASC160069 Grant. H. S. acknowledges the support to his research from Medtronic, Abbott Vascular, Philips, Gilead.

Author information

Authors and Affiliations

Authors

Contributions

AL: method design, development, advising, code implementation, paper writing. SB: method design, development, code implementation, paper writing. MP: code development, paper writing. DM: data collection, image segmentation, proofreading. HS: clinical direction, data collection, supervision and handling of the clinical data, proofreading. CC, FM: method design, advising, results analysis, proofreading. AV: method design, advising, results analysis, paper writing.

Corresponding author

Correspondence to Alessandro Veneziani.

Ethics declarations

Conflict of interest

The authors A.L., S.B., D.M., M.P., C.C., and F.M. declare that they have no conflict of interest. H.S.  and A.V.  are co-founders, former CMO/consultant and CSO respectively and equity holders of COVANOS Inc. A.L. is a consultant and equity holder of COVANOS Inc. No conflict of interest to be disclosed for this activity. H.S. received grants from Medtronic, Abbott Vascular, Philips, and Gilead. H.S. is also part of the Trial steering committee, consultant for Philips, Abbott Vascular.

Research Involving Human Rights

No human studies were carried by the authors specifically for this paper.

Consent to Participate

Anonymized patient data used in this study were existing data collected using approved protocol with informed consent obtained.

Consent for Publication

All the authors approve the content of the paper and its publication.

Additional information

Associate Editor Igor Efimov oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefieux, A., Bridio, S., Molony, D. et al. Semi-Automatic Reconstruction of Patient-Specific Stented Coronaries based on Data Assimilation and Computer Aided Design. Cardiovasc Eng Tech 13, 517–534 (2022). https://doi.org/10.1007/s13239-021-00570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00570-7

Keywords

Navigation