Skip to main content

Advertisement

Log in

Modeling and Reducing the Effect of Geometric Uncertainties in Intracranial Aneurysms with Polynomial Chaos Expansion, Data Decomposition, and 4D-Flow MRI

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Variations in the vessel radius of segmented surfaces of intracranial aneurysms significantly influence the fluid velocities given by computer simulations. It is important to generate models that capture the effect of these variations in order to have a better interpretation of the numerically predicted hemodynamics. Also, it is highly relevant to develop methods that combine experimental observations with uncertainty modeling to get a closer approximation to the blood flow behavior.

Methods

This work applies polynomial chaos expansion to model the effect of geometric uncertainties on the simulated fluid velocities of intracranial aneurysms. The radius of the vessel is defined as the uncertainty variable. Proper orthogonal decomposition is applied to characterize the solution space of fluid velocities. Next, a process of projecting the 4D-Flow MRI velocities on the basis vectors followed by coefficient mapping using generalized dynamic mode decomposition enables the merging of 4D-Flow MRI with the uncertainty propagated fluid velocities.

Results

Polynomial chaos expansion propagates the fluid velocities with an error of 2% in velocity magnitude relative to computer simulations. Also, the bifurcation region (or impingement location) shows a standard deviation of 0.17 m/s (since an available reported variance in the vessel radius is adopted to model the uncertainty, the expected standard deviation may be different). Numerical phantom experiments indicate that the proposed approach reconstructs the fluid velocities with 0.3% relative error in presence of geometric uncertainties.

Conclusion

Polynomial chaos expansion is an effective approach to propagate the effect of the uncertainty variable in the blood flow velocities of intracranial aneurysms. Merging 4D-Flow MRI and uncertainty propagated fluid velocities leads to more realistic flow trends relative to ignoring the uncertainty in the vessel radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Babuška, I., F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial differential equations with random input dat. SIAM J. Numer. Anal. 45(3), 1005–1034, 2007.

    Article  MathSciNet  Google Scholar 

  2. Bakhshinejad, A., A. Baghaie, A. Vali, D. Saloner, V. L. Rayz, and R. M. D’Souza. Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression. J. Biomech. 58:162–173, 2017.

    Article  Google Scholar 

  3. Berg, P., S. Saalfeld, S. Voß, O. Beuing, and G. Janiga. A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation. Neurosurg. Focus 47(1):E15, 2019.

    Article  Google Scholar 

  4. Berg, P., S. Voß, S. Saalfeld, G. Janiga, A. W. Bergersen, K. Valen-Sendstad, J. Bruening, L. Goubergrits, A. Spuler, N. M. Cancelliere, D. A. Steinman, V. M. Pereira, T. L. Chiu, A. C. O. Tsang, B. J. Chung, J. R. Cebral, S. Cito, J. Pallarès, G. Copelli, B. Csippa, G. Paál, S. Fujimura, H. Takao, S. Hodis, G. Hille, C. Karmonik, S. Elias, K. Kellermann, M. O. Khan, A. L. Marsden, H. G. Morales, S. Piskin, E. A. Finol, M. Pravdivtseva, H. Rajabzadeh-Oghaz, N. Paliwal, H. Meng, S. Seshadhri, M. Howard, M. Shojima, S.-I. Sugiyama, K. Niizuma, S. Sindeev, S. Frolov, T. Wagner, A. Brawanski, Y. Qian, Y.-A. Wu, K. D. Carlson, D. Dragomir-Daescu, and O. Beuing. Multiple aneurysms anatomy challenge 2018 (MATCH): phase I: segmentation. Cardiovasc. Eng. Technol. 9(4), 565–581, 2018.

    Article  Google Scholar 

  5. Biehler, J. and W. A. Wall. The impact of personalized probabilistic wall thickness models on peak wall stress in abdominal aortic aneurysms. Int. J. Numer. Methods Biomed. Eng. 2018. https://doi.org/10.1002/cnm.2922.

    Article  Google Scholar 

  6. Boas, M. L. Mathematical Methods in the Physical Sciences. New York: Wiley, 3 edn, 1983.

  7. Bonney, P. A., M. Connor, T. Fujii, P. Singh, M. J. Koch, C. J. Stapleton, W. J. Mack, and B. P. Walcott. Failure of flow diverter therapy: predictors and management strategies. Neurosurgery 86:S64–S73, 2020.

    Article  Google Scholar 

  8. Brown, R. W., Y.-C. N. Cheng, E. M. Haacke, M. R. Thompson, and R. Venkatesan. Magnetic Resonance Imaging: Physical Principles and Sequence Design. New York: Wiley, 2014.

    Book  Google Scholar 

  9. Brüning, J., F. Hellmeier, P. Yevtushenko, T. Kühne, and L. Goubergrits. Uncertainty quantification for non-invasive assessment of pressure drop across a coarctation of the aorta using CFD. Cardiovasc. Eng. Technol. 9(4), 82–596, 2018.

    Article  Google Scholar 

  10. Byun, J. S., S.-Y. Choi, and T. Seo. The numerical study of the hemodynamic characteristics in the patient-specific intracranial aneurysms before and after surgery. Comput. Math. Methods Med. 2016. https://doi.org/10.1155/2016/4384508.

    Article  Google Scholar 

  11. Cebral, J. R., M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, and A. F. Frangi. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24:457–467, 2005.

    Article  Google Scholar 

  12. Chen, P., A. Quarteroni, and G. Rozza. Reduced basis methods for uncertainty quantification. SIAM/ASA J. Uncertain. Quantif. 5(1), 813–869, 2017.

    Article  MathSciNet  Google Scholar 

  13. Colebank, M. J., L. M. Paun, M. U. Qureshi, N. Chesler, D. Husmeier, M. S. Olufsen, and L. E. Fix. Influence of image segmentation on one-dimensional fluid dynamics predictions in the mouse pulmonary arteries. J. R. Soc. Interface 16:20190284, 2019.

    Article  Google Scholar 

  14. Custodio, L., T. Etiene, S. Pesco, and C. Silva. Practical considerations on marching cubes 33 topological correctness. Comput. Graph. 37:840–850, 2013.

    Article  Google Scholar 

  15. Eck, V. G., W. P. Donders, J. Sturdy, J. Feinberg, T. Delhaas, L. R. Hellevik, and W. Huberts, A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications. Int. J. Numer. Methods Biomed. Eng. 2016. https://doi.org/10.1002/cnm.2755

    Article  Google Scholar 

  16. Fathi, M. F., A. Bakhshinejad, A. Baghaie, D. Saloner, R. H. Sacho, V. L. Rayz, and R. M. D’Souza. Denoising and spatial resolution enhancement of 4D flow MRI using proper orthogonal decomposition and lasso regularization. Comput. Med. Imag. Graph. 70:165–172, 2018.

    Article  Google Scholar 

  17. Gambaruto, A. M., J. Janela, A. Moura, and A. Sequeira. Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Math. Biosci. Eng. MBE 8:409–423, 2011.

    Article  MathSciNet  Google Scholar 

  18. Gao, H., L. Sun, and J.-X. Wang. Phygeonet: physics-informed geometry-adaptive convolutional neural networks for solving parametric pdes on irregular domain. arXiv:2004.13145, 2020.

  19. Geers, A. J., I. Larrabide, A. G. Radaelli, H. Bogunovic, M. Kim, H. a. F. Gratama van Andel, C. B. Majoie, E. VanBavel, and A. F. Frangi. Patient-specific computational hemodynamics of intracranial aneurysms from 3D rotational angiography and CT angiography: an in vivo reproducibility study. AJNR Am. J. Neuroradiol. 32:581–586, 2011.

  20. Guzzetti, S., L. M. Alvarez, P. Blanco, K. T. Carlberg, and A. Veneziani. Propagating uncertainties in large-scale hemodynamics models via network uncertainty quantification and reduced-order modelling. Comput. Methods Appl. Mech. Eng. 358:112626, 2020.

    Article  Google Scholar 

  21. Heiss, F., and V. Winschel. Likelihood approximation by numerical integration on sparse grids. J. Economet. 144(1), 62–80, 2008.

    Article  MathSciNet  Google Scholar 

  22. Hosder, S., R. Walters, and R. Perez. A non-intrusive polynomial chaos method for uncertainty propagation in cfd simulations. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. p. 891, 2006.

  23. Huberts, W., W. P. Donders, T. Delhaas, and F. N. van de Vosse. Applicability of the polynomial chaos expansion method for personalization of a cardiovascular pulse wave propagation mode. Int. J. Numer. Methods Biomed. Eng. 31:e02720, 2015.

    Article  Google Scholar 

  24. Ikawa, F., A. Morita, S. Tominari, T. Nakayama, Y. Shiokawa, I. Date, K. Nozaki, S. Miyamoto, T. Kayama, and H. Arai. Rupture risk of small unruptured cerebral aneurysms. J. Neurosurg. 132(1), 69–78, 2019.

    Article  Google Scholar 

  25. Jain, K. Efficacy of the FDA nozzle benchmark and the lattice boltzmann method for the analysis of biomedical flows in transitional regime. Med. Biol. Eng. Comput. 58:1817, 2020.

    Article  Google Scholar 

  26. Jain, K., J. Jiang, C. Strother, and K.-A. Mardal. Transitional hemodynamics in intracranial aneurysms-comparative velocity investigations with high resolution lattice boltzmann simulations, normal resolution ANSYS simulations, and MR imaging. Med. Phys. 43(11), 6186–6198, 2016.

    Article  Google Scholar 

  27. Johnson, K. M., and M. Markl. Improved snr in phase contrast velocimetry with five-point balanced flow encoding. Magnet. Reson. Med. 63(2), 349–355, 2010.

    Article  Google Scholar 

  28. Kaintura, A., T. Dhaene, and D. Spina. Review of polynomial chaos-based methods for uncertainty quantification in modern integrated circuits. Electronics 7(3):30, 2018.

    Article  Google Scholar 

  29. Li, M.-H., S.-W. Chen, Y.-D. Li, Y.-C. Chen, Y.-S. Cheng, D.-J. Hu, H.-Q. Tan, Q. Wu, W. Wang, Z.-K. Sun, X.-E. Wei, J.-Y. Zhang, R.-H. Qiao, W.-H. Zong, Y. Zhang, W. Lou, Z.-Y. Chen, Y. Zhu, D.-R. Peng, S.-X. Ding, X.-F. Xu, X.-H. Hou, and W.-P. Jia. Prevalence of unruptured cerebral aneurysms in Chinese adults aged 35 to 75 years: a cross-sectional study. Ann. Internal Med. 159:514–521, 2013.

    Article  Google Scholar 

  30. Litvinenko, A., D. Logashenko, R. Tempone, G. Wittum, and D. Keyes. Solution of the 3d density-driven groundwater flow problem with uncertain porosity and permeability. GEM-Int. J. Geomath. 11(1), 1–29, 2020.

    Article  MathSciNet  Google Scholar 

  31. Machi, P., R. Ouared, O. Brina, P. Bouillot, H. Yilmaz, M. I. Vargas, R. Gondar, P. Bijlenga, K. O. Lovblad, and Z. Kulcsár. Hemodynamics of focal versus global growth of small cerebral aneurysms. Clin. Neuroradiol. 29(2), 285–293, 2019.

    Article  Google Scholar 

  32. Najm, H. N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 41:35–52, 2009.

    Article  MathSciNet  Google Scholar 

  33. Ong, F., M. Uecker, U. Tariq, A. Hsiao, M. T. Alley, S. S. Vasanawala, and M. Lustig. Robust 4D flow denoising using divergence-free wavelet transform. Magnet. Reson. Med. 73(2), 828–842, 2015.

    Article  Google Scholar 

  34. Paulson, J. A., M. Martin-Casas, and A. Mesbah. Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions. PLoS Comput. Biol. 15(8):e1007308, 2019.

    Article  Google Scholar 

  35. Paulson, J. A., et al. Arbitrary polynomial chaos for uncertainty propagation of correlated random variables in dynamic systems. IFAC Paper 50:3548.

  36. Perez-Raya, I., M. F. Fathi, A. Baghaie, R. H. Sacho, K. M. Koch, and R. M. D’Souza. Towards multi-modal data fusion for super-resolution and denoising of 4d-flow MRI. Int. J. Numer. Methods Biomed. Eng. 36:e3381, 2020.

    Article  MathSciNet  Google Scholar 

  37. Petridis, A. K., M. Suresh, J. F. Cornelius, A. Tortora, H. J. Steiger, B. Turowski, and R. May. Aneurysm treatment response prediction in follow up black blood magnetic resonance imaging. A case series study. Clin. Pract. 8(1):1047, 2018.

    Article  Google Scholar 

  38. Pruitt, A. A., N. Jin, Y. Liu, O. P. Simonetti, and R. Ahmad. A method to correct background phase offset for phase-contrast MRI in the presence of steady flow and spatial wrap-around artefact. Magnet. Reson. Med. 81(4), 2424–2438, 2019.

    Article  Google Scholar 

  39. Raissi, M., P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part i): data-driven solutions of nonlinear partial differential equations. arXiv:1711.10561, 2017.

  40. Raissi, M., P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part ii): data-driven discovery of nonlinear partial differential equations. arXiv:1711.10566, 2017.

  41. Razaghi, R. H. Biglari, and A. Karimi. Risk of rupture of the cerebral aneurysm in relation to traumatic brain injury using a patient-specific fluid-structure interaction model. Comput. Methods Prog. Biomed. 176:9–16, 2019.

  42. Ren, Y., G.-Z. Chen, Z. Liu, Y. Cai, G.-M. Lu, and Z.-Y. Li. Reproducibility of image-based computational models of intracranial aneurysm: a comparison between 3D rotational angiography, CT angiography and MR angiography. BioMed. Eng. 15:50, 2016.

    Google Scholar 

  43. Sarrami-Foroushani, A., T. Lassila, and A. F. Frangi Virtual endovascular treatment of intracranial aneurysms: models and uncertainty. Wiley Interdiscipl. Rev. Syst. Biol. Med. 2017. https://doi.org/10.1155/2016/4384508

  44. Seo, J., D. E. Schiavazzi, A. M. Kahn, and A. L. Marsden. The effects of clinically-derived parametric data uncertainty in patient-specific coronary simulations with deformable walls. Int. J. Numer. Methods Biomed. Eng. 36:e3351, 2020.

    Article  MathSciNet  Google Scholar 

  45. Stankovic, Z., B. D. Allen, J. Garcia, K. B. Jarvis, and M. Markl. 4D flow imaging with MRI. Cardiovasc. Diagnos. Therapy 4:173–192, 2014.

    Google Scholar 

  46. Toth, G., and R. Cerejo. Intracranial aneurysms: review of current science and management. Vasc. Med. 23(3), 276–288, 2018.

    Article  Google Scholar 

  47. Töger, J., M. J. Zahr, N. Aristokleous, K. Markenroth Bloch, M. Carlsson, and P.-O. Persson. Blood flow imaging by optimal matching of computational fluid dynamics to 4d-flow data. Magnet. Reson. Med. 2020.

  48. Valen-Sendstad, K., A. W. Bergersen, Y. Shimogonya, L. Goubergrits, J. Bruening, J. Pallares, S. Cito, S. Piskin, K. Pekkan, A. J. Geers, I. Larrabide, S. Rapaka, V. Mihalef, W. Fu, A. Qiao, K. Jain, S. Roller, K.-A. Mardal, R. Kamakoti, T. Spirka, N. Ashton, A. Revell, N. Aristokleous, J. G. Houston, M. Tsuji, F. Ishida, P. G. Menon, L. D. Browne, S. Broderick, M. Shojima, S. Koizumi, M. Barbour, A. Aliseda, H. G. Morales, T. Lefèvre, S. Hodis, Y. M. Al-Smadi, J. S. Tran, A. L. Marsden, S. Vaippummadhom, G. A. Einstein, A. G. Brown, K. Debus, K. Niizuma, S. Rashad, S.-I. Sugiyama, M. Owais Khan, A. R. Updegrove, S. C. Shadden, B. M. W. Cornelissen, C. B. L. M. Majoie, P. Berg, S. Saalfield, K. Kono, and D. A. Steinman. Real-world variability in the prediction of intracranial aneurysm wall shear stress: The 2015 International Aneurysm CFD Challenge. Cardiovasc. Eng. Technol. 9(4): 544–564, 2018.

  49. Van Reeth, E., I. W. Tham, C. H. Tan, and C. L. Poh. Super-resolution in magnetic resonance imaging: a review. Concept. Magnet. Reson. Part A 40(6), 306–325, 2012.

    Article  Google Scholar 

  50. Vlak, M. H., A. Algra, R. Brandenburg, and G. J. Rinkel. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 10:626–636, 2011.

    Article  Google Scholar 

  51. Voß, S., O. Beuing, G. Janiga, and P. Berg. Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)-phase Ib: effect of morphology on hemodynamics. PloS ONE 14(5):e0216813, 2019.

    Article  Google Scholar 

  52. Wong, G. K. C., and W. S. Poon. Current status of computational fluid dynamics for cerebral aneurysms: the clinician’s perspective. J. Clin. Neurosci. 18:1285–1288, 2011.

    Article  Google Scholar 

  53. Xiu, D., and G. E. Karniadakis. The wiener-askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644, 2002.

    Article  MathSciNet  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Perez-Raya.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 2892 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Raya, I., Fathi, M.F., Baghaie, A. et al. Modeling and Reducing the Effect of Geometric Uncertainties in Intracranial Aneurysms with Polynomial Chaos Expansion, Data Decomposition, and 4D-Flow MRI. Cardiovasc Eng Tech 12, 127–143 (2021). https://doi.org/10.1007/s13239-020-00511-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00511-w

Keywords

Navigation