Skip to main content
Log in

Effect of Pneumatic Tubing System Transport on Platelet Apheresis Units

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Platelet apheresis units are transfused into patients to mitigate or prevent bleeding. In a hospital, platelet apheresis units are transported from the transfusion service to the healthcare teams via two methods: a pneumatic tubing system (PTS) or ambulatory transport. Whether PTS transport affects the activity and utility of platelet apheresis units is unclear. We quantified the gravitational forces and transport time associated with PTS and ambulatory transport within our hospital. Washed platelets and supernatants were prepared from platelet apheresis units prior to transport as well as following ambulatory or PTS transport. For each group, we compared resting and agonist-induced platelet activity and platelet aggregate formation on collagen or von Willebrand factor (VWF) under shear, platelet VWF-receptor expression and VWF multimer levels. Subjection of platelet apheresis units to rapid acceleration/deceleration forces during PTS transport did not pre-activate platelets or their ability to activate in response to platelet agonists as compared to ambulatory transport. Platelets within platelet apheresis units transported via PTS retained their ability to adhere to surfaces of VWF and collagen under shear, although platelet aggregation on collagen and VWF was diminished as compared to ambulatory transport. VWF multimer levels and platelet GPIb receptor expression was unaffected by PTS transport as compared to ambulatory transport. Subjection of platelet apheresis units to PTS transport did not significantly affect the baseline or agonist-induced levels of platelet activation as compared to ambulatory transport. Our case study suggests that PTS transport may not significantly affect the hemostatic potential of platelets within platelet apheresis units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

PTS:

Pneumatic tubing system

AMB:

Ambulatory transport

PRP:

Platelet rich plasma

cPRP:

Concentrated platelet rich plasma

VWF:

von Willebrand factor

GPIb:

Glycoprotein Ib

CD62P:

P-selectin

ECM:

Extracellular matrix

References

  1. AABB. Standards for Blood Banks and Transfusion Services (29th ed.). Bethesda: American Association of Blood Banks, 2014.

    Google Scholar 

  2. Amann, G., C. Zehntner, F. Marti, and G. Colucci. Effect of acceleration forces during transport through a pneumatic tube system on ROTEM® analysis. Clin. Chem. Lab. Med. 50:1335–1342, 2012.

    Article  Google Scholar 

  3. Auton, M., C. Zhu, and M. A. Cruz. The mechanism of VWF-mediated platelet GPIbalpha binding. Biophys. J. 99:1192–1201, 2010.

    Article  Google Scholar 

  4. Baker-Groberg, S. M., S. Lattimore, M. Recht, O. J. T. McCarty, and K. M. Haley. Assessment of neonatal platelet adhesion, activation, and aggregation. J. Thromb. Haemost. 14:815–827, 2016.

    Article  Google Scholar 

  5. Bartels, A., Y. Sarpong, J. Coberly, et al. Failure of the Platelet Function Assay (PFA)-100 to detect antiplatelet agents. Surgery 158:1012–1018, 2015; (discussion 1018–1019).

    Article  Google Scholar 

  6. Baurand, A., A. Eckly, N. Bari, C. Léon, B. Hechler, J. P. Cazenave, and C. Gachet. Desensitization of the platelet aggregation response to ADP: differential down-regulation of the P2Y1 and P2cyc receptors. Thromb. Haemost. 84:484–491, 2000.

    Article  Google Scholar 

  7. Bolliger, D., M. D. Seeberger, K. A. Tanaka, S. Dell-Kuster, M. Gregor, U. Zenklusen, M. Grapow, D. A. Tsakiris, and M. Filipovic. Pre-analytical effects of pneumatic tube transport on impedance platelet aggregometry. Platelets 20:458–465, 2009.

    Article  Google Scholar 

  8. Boomgaard, M. N., C. W. Gouwerok, C. H. Homburg, G. de Groot, M. J. IJsseldijk, and D. de Korte. The platelet adhesion capacity to subendothelial matrix and collagen in a flow model during storage of platelet concentrates for 7 days. Thromb. Haemost. 72:611–616, 1994.

    Article  Google Scholar 

  9. Canault, M., D. Duerschmied, A. Brill, L. Stefanini, D. Schatzberg, S. M. Cifuni, W. Bergmeier, and D. D. Wagner. p38 mitogen-activated protein kinase activation during platelet storage: consequences for platelet recovery and hemostatic function in vivo. Blood 115:1835–1842, 2010.

    Article  Google Scholar 

  10. Cardigan, R., C. Turner, and P. Harrison. Current methods of assessing platelet function: relevance to transfusion medicine. Vox Sang. 88:153–163, 2005.

    Article  Google Scholar 

  11. Chen, W., X. Liang, A. K. Syed, P. Jessup, W. R. Church, J. Ware, C. D. Josephson, and R. Li. Inhibiting GPIbα shedding preserves post-transfusion recovery and hemostatic function of platelets after prolonged storage. Arterioscler. Thromb. Vasc. Biol. 36:1821–1828, 2016.

    Article  Google Scholar 

  12. Das, S. S., R. Chaudhary, S. K. Verma, S. Ojha, and D. Khetan. Determinants of transfusion decisions in a mixed medical-surgical intensive care unit—a prospective cohort study. Blood Transfus. 7:188–192, 2009.

    Google Scholar 

  13. De Rossi, S. S., and M. Glick. Bleeding time: an unreliable predictor of clinical hemostasis. J. Oral Maxillofac. Surg. 54:1119–1120, 1996.

    Article  Google Scholar 

  14. Devine, D. V., and K. Serrano. The platelet storage lesion. Clin. Lab. Med. 30:475–487, 2010.

    Article  Google Scholar 

  15. Dyszkiewicz-Korpanty, A., R. Quinton, J. Yassine, and R. Sarode. The effect of a pneumatic tube transport system on PFA-100 trade mark closure time and whole blood platelet aggregation. J. Thromb. Haemost. 2:354–356, 2004.

    Article  Google Scholar 

  16. Enko, D., H. Mangge, A. Münch, T. Niedrist, E. Mahla, H. Metzler, and F. Prüller. Pneumatic tube system transport does not alter platelet function in optical and whole blood aggregometry, prothrombin time, activated partial thromboplastin time, platelet count and fibrinogen in patients on anti-platelet drug therapy. Biochem. Med. 27:217–224, 2017.

    Article  Google Scholar 

  17. Favaloro, E. J. Diagnosing von Willebrand disease: a short history of laboratory milestones and innovations, plus current status, challenges, and solutions. Semin. Thromb. Hemost. 40:551–570, 2014.

    Article  Google Scholar 

  18. Gitz, E., C. A. Koekman, D. J. van den Heuvel, H. Deckmyn, J. W. Akkerman, H. C. Gerritsen, and R. T. Urbanus. Improved platelet survival after cold storage by prevention of glycoprotein Ibα clustering in lipid rafts. Haematologica 97:1873–1881, 2012.

    Article  Google Scholar 

  19. Glas, M., D. Mauer, H. Kassas, T. Volk, and S. Kreuer. Sample transport by pneumatic tube system alters results of multiple electrode aggregometry but not rotational thromboelastometry. Platelets 24:454–461, 2013.

    Article  Google Scholar 

  20. Hardy, A. R., P. B. Conley, J. Luo, J. L. Benovic, A. W. Poole, and S. J. Mundell. P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood 105:3552–3560, 2005.

    Article  Google Scholar 

  21. Harrison, P., I. Mackie, A. Mumford, C. Briggs, R. Liesner, M. Winter, S. Machin, and British Committee for Standards in Haematology. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br. J. Haematol. 155:30–44, 2011.

    Article  Google Scholar 

  22. Hess, J. R., K. Brohi, R. P. Dutton, et al. The coagulopathy of trauma: a review of mechanisms. J. Trauma 65:748–754, 2008.

    Article  Google Scholar 

  23. Holme, S. Storage and quality assessment of platelets. Vox Sang. 74:207–216, 1998.

    Article  Google Scholar 

  24. Hübner, U., N. Böckel-Frohnhöfer, B. Hummel, and J. Geisel. The effect of a pneumatic tube transport system on platelet aggregation using optical aggregometry and the PFA-100. Clin. Lab. 56:59–64, 2010.

    Google Scholar 

  25. Jackson, S. P. The growing complexity of platelet aggregation. Blood 109:5087–5095, 2007.

    Article  Google Scholar 

  26. Jackson, S. P., W. S. Nesbitt, and S. Kulkarni. Signaling events underlying thrombus formation. J. Thromb. Haemost. 1:1602–1612, 2003.

    Article  Google Scholar 

  27. Jain, A., A. D. van der Meer, A.-L. Papa, et al. Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium. Biomed. Microdevices 18:73, 2016.

    Article  Google Scholar 

  28. Javela, K., J. Eronen, S. Sarna, and R. Kekomäki. Soluble glycoprotein V as a quality marker of platelet concentrates stressed by transportation. Transfusion (Paris) 45:1504–1511, 2005.

    Article  Google Scholar 

  29. Jeger, V., H. Zimmermann, and A. K. Exadaktylos. The role of thrombelastography in multiple trauma. Emerg. Med. Int. 2011:1–4, 2011.

    Article  Google Scholar 

  30. Jurk, K., and B. E. Kehrel. Platelets: physiology and biochemistry. Semin. Thromb. Hemost. 31:381–392, 2005.

    Article  Google Scholar 

  31. Kanaji, S., S. A. Fahs, Q. Shi, S. L. Haberichter, and R. R. Montgomery. Contribution of platelet vs. endothelial VWF to platelet adhesion and hemostasis. J. Thromb. Haemost. 10:1646–1652, 2012.

    Article  Google Scholar 

  32. Kauvar, D. S., R. Lefering, and C. E. Wade. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J. Trauma 60:S3–11, 2006.

    Article  Google Scholar 

  33. Kelly, A. M., S. F. Garner, T. Foukaneli, et al. The effect of variation in donor platelet function on transfusion outcome: a semirandomized controlled trial. Blood 130:214–220, 2017.

    Article  Google Scholar 

  34. Kicken, C., S. V. Poucke, A. E. Marcus, M. D. Lancé, and Y. Henskens. Response of platelet concentrates to pressure and temperature changes without impairment of the in vitro function. Thromb. Res. 135:679–683, 2015.

    Article  Google Scholar 

  35. Kicken, C. H., M. Roest, Y. M. C. Henskens, B. de Laat, and D. Huskens. Application of an optimized flow cytometry-based quantification of Platelet Activation (PACT): Monitoring platelet activation in platelet concentrates. PloS ONE 12:e0172265, 2017.

    Article  Google Scholar 

  36. Kreuger, A. L., C. Caram-Deelder, J. Jacobse, J.-L. Kerkhoffs, J. G. van der Bom, and R. A. Middelburg. Effect of storage time of platelet products on clinical outcomes after transfusion: a systematic review and meta-analyses. Vox Sang 112:291–300, 2017.

    Article  Google Scholar 

  37. Lancé, M. D., M. A. E. Marcus, R. van Oerle, H. M. S. Theunissen, and Y. M. C. Henskens. Platelet concentrate transport in pneumatic tube systems—does it work? Vox Sang. 103:79–82, 2012.

    Article  Google Scholar 

  38. Lenting, P. J., and C. V. Denis. Platelet von Willebrand factor: sweet resistance. Blood 122:4006–4007, 2013.

    Article  Google Scholar 

  39. Leytin, V., D. J. Allen, A. Gwozdz, B. Garvey, and J. Freedman. Role of platelet surface glycoprotein Ibalpha and P-selectin in the clearance of transfused platelet concentrates. Transfusion (Paris) 44:1487–1495, 2004.

    Article  Google Scholar 

  40. Li, R., H. Elmongy, C. Sims, and S. L. Diamond. Ex vivo recapitulation of trauma-induced coagulopathy and preliminary assessment of trauma patient platelet function under flow using microfluidic technology. J. Trauma Acute Care Surg. 80:440–449, 2016.

    Article  Google Scholar 

  41. Liang, X., S. R. Russell, S. Estelle, L. H. Jones, S. Cho, M. L. Kahn, M. C. Berndt, S. T. Bunting, J. Ware, and R. Li. Specific inhibition of ectodomain shedding of glycoprotein Ibα by targeting its juxtamembrane shedding cleavage site. J. Thromb. Haemost. 11:2155–2162, 2013.

    Article  Google Scholar 

  42. Liang, X., A. K. Syed, S. R. Russell, J. Ware, and R. Li. Dimerization of glycoprotein Ibα is not sufficient to induce platelet clearance. J. Thromb. Haemost. 14:381–386, 2016.

    Article  Google Scholar 

  43. Ling, L.-Q., J. Liao, Q. Niu, X. Wang, J. Jia, C.-H. Zuo, H. Jiang, and J. Zhou. Evaluation of an automated light transmission aggregometry. Platelets 28:712, 2017.

    Article  Google Scholar 

  44. Luo, G.-P., B. Ni, X. Yang, and Y.-Z. Wu. von Willebrand factor: more than a regulator of hemostasis and thrombosis. Acta Haematol. 128:158–169, 2012.

    Article  Google Scholar 

  45. Magnette, A., M. Chatelain, B. Chatelain, H. Ten Cate, and F. Mullier. Pre-analytical issues in the haemostasis laboratory: guidance for the clinical laboratories. Thromb. J. 14:49, 2016.

    Article  Google Scholar 

  46. McCarty, O. J. T., S. D. J. Calaminus, M. C. Berndt, L. M. Machesky, and S. P. Watson. von Willebrand factor mediates platelet spreading through glycoprotein Ib and alpha(IIb)beta3 in the presence of botrocetin and ristocetin, respectively. J. Thromb. Haemost. 4:1367–1378, 2006.

    Article  Google Scholar 

  47. McGrath, R. T., M. van den Biggelaar, B. Byrne, J. M. O’Sullivan, O. Rawley, R. O’Kennedy, J. Voorberg, R. J. S. Preston, and J. S. O’Donnell. Altered glycosylation of platelet-derived von Willebrand factor confers resistance to ADAMTS13 proteolysis. Blood 122:4107–4110, 2013.

    Article  Google Scholar 

  48. Moore, H. B., E. E. Moore, M. P. Chapman, et al. Viscoelastic measurements of platelet function, not fibrinogen function, predicts sensitivity to tissue-type plasminogen activator in trauma patients. J Thromb Haemost 13:1878–1887, 2015.

    Article  Google Scholar 

  49. Mullins, G. R., J. H. Harrison, and D. E. Bruns. Smartphones can monitor medical center pneumatic tube systems. Clin. Chem. 62:891–893, 2016.

    Article  Google Scholar 

  50. Nybo, M., M. E. Lund, K. Titlestad, and C. U. Maegaard. Blood sample transportation by pneumatic transportation systems: a systematic literature review. Clin. Chem. 64:782, 2017.

    Article  Google Scholar 

  51. Ozaki, Y., N. Asazuma, K. Suzuki-Inoue, and M. C. Berndt. Platelet GPIb-IX-V-dependent signaling. J. Thromb. Haemost. 3:1745–1751, 2005.

    Article  Google Scholar 

  52. Perkins, J. G., A. P. Cap, C. P. Andrew, et al. An evaluation of the impact of apheresis platelets used in the setting of massively transfused trauma patients. J. Trauma 66:S77–S84, 2009; (discussion S84–S85).

    Article  Google Scholar 

  53. Pidcoke, H. F., J. K. Aden, A. G. Mora, M. A. Borgman, P. C. Spinella, M. A. Dubick, L. H. Blackbourne, and A. P. Cap. Ten-year analysis of transfusion in Operation Iraqi Freedom and Operation Enduring Freedom: increased plasma and platelet use correlates with improved survival. J. Trauma Acute Care Surg. 73:S445–452, 2012.

    Article  Google Scholar 

  54. Ruggeri, Z. M. Platelets in atherothrombosis. Nat Med 8:1227–1234, 2002.

    Article  Google Scholar 

  55. Sandgren, P., S. Larsson, P. Wai-San, and B. Aspevall-Diedrich. The effects of pneumatic tube transport on fresh and stored platelets in additive solution. Blood Transfus. 12:85–90, 2014.

    Google Scholar 

  56. Sauaia, A., F. A. Moore, E. E. Moore, K. S. Moser, R. Brennan, R. A. Read, and P. T. Pons. Epidemiology of trauma deaths: a reassessment. J. Trauma 38:185–193, 1995.

    Article  Google Scholar 

  57. Schoner, A., C. Tyrrell, M. Wu, J. M. Gelow, A. A. Hayes, J. R. Lindner, K. L. Thornburg, and W. Hasan. Endocardial endothelial dysfunction progressively disrupts initially anti then pro-thrombotic pathways in heart failure mice. PloS ONE 10:e0142940, 2015.

    Article  Google Scholar 

  58. Schreiber, M. A., J. Differding, P. Thorborg, J. C. Mayberry, and R. J. Mullins. Hypercoagulability is most prevalent early after injury and in female patients. J. Trauma 58:475–480, 2005; (discussion 480–481).

    Article  Google Scholar 

  59. Singh, I., E. Themistou, L. Porcar, and S. Neelamegham. Fluid shear induces conformation change in human blood protein von Willebrand factor in solution. Biophys. J. 96:2313–2320, 2009.

    Article  Google Scholar 

  60. Sobrino, J., and S. Shafi. Timing and causes of death after injuries. Proc. Bayl. Univ. Med. Cent. 26:120–123, 2013.

    Article  Google Scholar 

  61. Stanworth, S. J., L. J. Estcourt, G. Powter, et al. A no-prophylaxis platelet-transfusion strategy for hematologic cancers. N. Engl. J. Med. 368:1771–1780, 2013.

    Article  Google Scholar 

  62. Streichert, T., B. Otto, C. Schnabel, G. Nordholt, M. Haddad, M. Maric, A. Petersmann, R. Jung, and C. Wagener. Determination of hemolysis thresholds by the use of data loggers in pneumatic tube systems. Clin. Chem. 57:1390–1397, 2011.

    Article  Google Scholar 

  63. Tao, Y., X. Zhang, X. Liang, J. Zang, X. Mo, and R. Li. Structural basis for the specific inhibition of glycoprotein Ibα shedding by an inhibitory antibody. Sci. Rep. 6:24789, 2016.

    Article  Google Scholar 

  64. Tenorio, G. C., R. G. Strauss, M. J. Wieland, T. A. Behlke, and G. A. Ludwig. A randomized comparison of plateletpheresis with the same donors using four blood separators at a single blood center. J. Clin. Apheresis 17:170–176, 2002.

    Article  Google Scholar 

  65. Thalén, S., I. Forsling, J. Eintrei, L. Söderblom, and J. P. Antovic. Pneumatic tube transport affects platelet function measured by multiplate electrode aggregometry. Thromb. Res. 132:77–80, 2013.

    Article  Google Scholar 

  66. Tisherman, S. A., R. H. Schmicker, K. J. Brasel, E. M. Bulger, J. D. Kerby, J. P. Minei, J. L. Powell, D. A. Reiff, S. B. Rizoli, and M. A. Schreiber. Detailed description of all deaths in both the shock and traumatic brain injury hypertonic saline trials of the Resuscitation Outcomes Consortium. Ann. Surg. 261:586–590, 2015.

    Article  Google Scholar 

  67. Wallin, O., J. Söderberg, K. Grankvist, P. A. Jonsson, and J. Hultdin. Preanalytical effects of pneumatic tube transport on routine haematology, coagulation parameters, platelet function and global coagulation. Clin. Chem. Lab. Med. 46:1443–1449, 2008.

    Article  Google Scholar 

  68. Watson, S. P., J. M. Auger, O. J. T. McCarty, and A. C. Pearce. GPVI and integrin αIIbβ3 signaling in platelets. J. Thromb. Haemost. 3:1752–1762, 2005.

    Article  Google Scholar 

  69. Winters, J. L. Complications of donor apheresis. J. Clin. Apheresis 21:132–141, 2006.

    Article  Google Scholar 

  70. Yonge, J. D., and M. A. Schreiber. The pragmatic randomized optimal platelet and plasma ratios trial: what does it mean for remote damage control resuscitation? Transfusion (Paris) 56(Suppl 2):S149–156, 2016.

    Article  Google Scholar 

  71. Zilberman-Rudenko, J., A. Itakura, J. Maddala, S. M. Baker-Groberg, R. Vetter, E. I. Tucker, A. Gruber, C. Gerdes, and O. J. T. McCarty. Biorheology of platelet activation in the bloodstream distal to thrombus formation. Cell. Mol. Bioeng. 9:496–508, 2016.

    Article  Google Scholar 

  72. Zilberman-Rudenko, J., A. Itakura, C. P. Wiesenekker, R. Vetter, C. Maas, D. Gailani, E. I. Tucker, A. Gruber, C. Gerdes, and O. J. T. McCarty. Coagulation factor XI promotes distal platelet activation and single platelet consumption in the bloodstream under shear flow. Arterioscler Thromb. Vasc. Biol. 36:510–517, 2016.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff of the OHSU Transfusion Service, the American Red Cross, Pacific Northwest Blood Services Region, and Fenwal Inc., A Fresenius Kabi Company, producer of Amicus separator, for technical help with procurement of platelet apheresis units and preparation of fresh cPRP. O.J.T. McCarty is an American Heart Association Established Investigator (13EIA12630000).

Funding

This study was funded by grants from the National Institutes of Health (R01HL101972, R01GM116184 and F31HL13623001). O.J.T. McCarty is an American Heart Association Established Investigator (13EIA12630000).

Conflict of interest

J. Zilberman-Rudenko, F. Z. Zhao, S. E. Reitsma, A. Mitrugno, J. Pang, J. J. Shatzel, B. Rick, C. Tyrrell, W. Hasan, O. J. T. McCarty, and M. A. Schreiber have no conflicts of interests.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was received from all human participants. This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jevgenia Zilberman-Rudenko.

Additional information

Associate Editors Keefe B. Manning and Ajit P. Yoganathan oversaw the review of this article.

J. Zilberman-Rudenko and F. Zhao are co-first authors. O. J. T. McCarty and M. A. Schreiber and are co-senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13239_2018_361_MOESM1_ESM.jpg

Supplementary material 1 (JPEG 1832 kb) Supplemental Figure 1. Integration of an accelerometer. From left to right: an iPod is attached to the standard cushioning sponge using silk tape; subsequently, the iPod attached to the sponge is inserted into a transport capsule and is protected by additional layer of sponge prior to insertion of a platelet apheresis units.

13239_2018_361_MOESM2_ESM.tif

Supplementary material 2 (TIFF 548 kb) Supplemental Figure 2. Fresh platelet activation and microaggregation. Freshly prepared washed platelets were incubated with indicated agonists for 30 minutes, immunostained and evaluated by fluorescence-activated cell sorting (FACS) cytometry for percent platelet activation (CD41+/CD31+/CD62P+ events; A) or platelet microaggregate formation (high fluorescence intensity CD41+/CD31+ events; B). Mean ± SEM, n = 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zilberman-Rudenko, J., Zhao, F.Z., Reitsma, S.E. et al. Effect of Pneumatic Tubing System Transport on Platelet Apheresis Units. Cardiovasc Eng Tech 9, 515–527 (2018). https://doi.org/10.1007/s13239-018-0361-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-0361-2

Keywords

Navigation