Skip to main content
Log in

Arrhythmia Vulnerability in Diabetic Cardiac Tissue is Species-Dependent: Effects of I KATP, Uncoupling, and Connexin Lateralization

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Amongst the complications of diabetes is arrhythmia, the risk of which depends on multiple factors. This study was designed to investigate several factors, including the effects of ATP-sensitive potassium current, lateralized connexins, and gap junction uncoupling. ATP-sensitive potassium channel (I KATP) opening is caused by ischemia, which can occur in diabetic or non-diabetic hearts. I KATP opening was simulated in this work to determine if the risk of ischemia-induced arrhythmias is affected by diabetes. Simulations were performed using healthy and diabetic models of rat and rabbit ventricle. Results showed that the diabetic rat model is less vulnerable to reentrant arrhythmia than the healthy rat model. The diabetic rabbit model was more vulnerable to reentrant arrhythmia than the healthy rabbit model. In both rabbit models, the vulnerability increased as the gap junctional coupling decreased. Opening of I KATP resulted in larger window of vulnerability. Conduction reserve was simulated based on 1D simulations for both rat and rabbit models. There was no difference between rat and rabbit conduction reserve. Our results showed that the simulation results are model-dependent, i.e., results from the rabbit model are similar to human clinical data, while the results from the rat model contradict human clinical observations, suggesting a significant species-dependence in arrhythmia vulnerability in the diabetic heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10

Similar content being viewed by others

References

  1. Akar, F. G., D. D. Spragg, R. S. Tunin, D. A. Kass, and G. F. Tomaselli. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ. Res. 95:717–725, 2004.

    Article  Google Scholar 

  2. Bulhak, A. A., C. Jung, C.-G. Ostenson, J. O. Lundberg, P.-O. Sjöquist, and J. Pernow. PPAR-alpha activation protects the type 2 diabetic myocardium against ischemia-reperfusion injury: involvement of the PI3-Kinase/Akt and NO pathway. Am. J. Physiol. Heart Circ. Physiol. 296:H719–H727, 2009.

    Article  Google Scholar 

  3. Casis, O., M. Gallego, M. Iriarte, and J. A. Sánchez-Chapula. Effects of diabetic cardiomyopathy on regional electrophysiologic characteristics of rat ventricle. Diabetologia 43:101–109, 2000.

    Article  Google Scholar 

  4. Choi, K. M., Y. Zhong, B. D. Hoit, I. L. Grupp, H. Hahn, K. W. Dilly, S. Guatimosim, W. J. Lederer, and M. A. Matlib. Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am. J. Physiol. Heart Circ. Physiol. 283:H1398–H1408, 2002.

    Article  Google Scholar 

  5. Chow, E., A. Bernjak, S. Williams, R. A. Fawdry, S. Hibbert, J. Freeman, P. J. Sheridan, and S. R. Heller. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes 63:1738–1747, 2014.

    Article  Google Scholar 

  6. Chu, L. M., R. M. Osipov, M. P. Robich, J. Feng, S. Oyamada, C. Bianchi, and F. W. Sellke. Is hyperglycemia bad for the heart during acute ischemia? J. Thorac. Cardiovasc. Surg. 140:1345–1352, 2010.

    Article  Google Scholar 

  7. Clerc, L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. 255:335–346, 1976.

    Article  Google Scholar 

  8. De Vuyst, E., K. Boengler, G. Antoons, K. R. Sipido, R. Schulz, and L. Leybaert. Pharmacological modulation of connexin-formed channels in cardiac pathophysiology. Br. J. Pharmacol. 163:469–483, 2011.

    Article  Google Scholar 

  9. Desrois, M., K. Clarke, C. Lan, C. Dalmasso, M. Cole, B. Portha, P. J. Cozzone, and M. Bernard. Upregulation of eNOS and unchanged energy metabolism in increased susceptibility of the aging type 2 diabetic GK rat heart to ischemic injury. Am. J. Physiol. Heart Circ. Physiol. 299:H1679–H1686, 2010.

    Article  Google Scholar 

  10. Ebel, D., J. Müllenheim, J. Frässdorf, et al. Effect of acute hyperglycaemia and diabetes mellitus with and without short-term insulin treatment on myocardial ischaemic late preconditioning in the rabbit heart in vivo. Pflugers Arch. 446:175–182, 2003.

    Article  Google Scholar 

  11. Erickson, J. R., L. Pereira, L. Wang, et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502:372–376, 2013.

    Article  Google Scholar 

  12. Fang, Z. Y., J. B. Prins, and T. H. Marwick. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr. Rev. 25:543–567, 2004.

    Article  Google Scholar 

  13. Ghaly, H. A., P. M. Boyle, E. J. Vigmond, Y. Shimoni, and A. Nygren. Simulations of reduced conduction reserve in the diabetic rat heart: response to uncoupling and reduced excitability. Ann. Biomed. Eng. 38:1415–1425, 2010.

    Article  Google Scholar 

  14. Kanno, S., and J. E. Saffitz. The role of myocardial gap junctions in electrical conduction and arrhythmogenesis. Cardiovasc. Pathol. 10:169–177, 2001.

    Article  Google Scholar 

  15. Katritsis, D. G., and A. J. Camm. Atrioventricular nodal reentrant tachycardia. Circulation 122:831–840, 2010.

    Article  Google Scholar 

  16. Krames, B. B., and E. J. Van Liere. The heart weight and ventricular weights of normal adult albino rats. Anat. Rec. 156:461–464, 1966.

    Article  Google Scholar 

  17. Kristiansen, S. B., B. Løfgren, N. B. Støttrup, D. Khatir, J. E. Nielsen-Kudsk, T. T. Nielsen, H. E. Bøtker, and A. Flyvbjerg. Ischaemic preconditioning does not protect the heart in obese and lean animal models of Type 2 diabetes. Diabetologia 47:1716–1721, 2004.

    Article  Google Scholar 

  18. Lefer, D. J., R. Scalia, S. P. Jones, B. R. Sharp, M. R. Hoffmeyer, A. R. Farvid, M. F. Gibson, and A. M. Lefer. HMG-CoA reductase inhibition protects the diabetic myocardium from ischemia-reperfusion injury. FASEB J. 15:1454–1456, 2001.

    Google Scholar 

  19. Ma, G., M. Al-Shabrawey, J. A. Johnson, R. Datar, H. E. Tawfik, D. Guo, R. B. Caldwell, and R. W. Caldwell. Protection against myocardial ischemia/reperfusion injury by short-term diabetes: enhancement of VEGF formation, capillary density, and activation of cell survival signaling. Naunyn Schmiedebergs Arch. Pharmacol. 373:415–427, 2006.

    Article  Google Scholar 

  20. Mahajan, A., Y. Shiferaw, D. Sato, et al. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys. J. 94:392–410, 2008.

    Article  Google Scholar 

  21. Marfella, R., M. D’Amico, C. Di Filippo, E. Piegari, F. Nappo, K. Esposito, L. Berrino, F. Rossi, and D. Giugliano. Myocardial infarction in diabetic rats: Role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1. Diabetologia 45:1172–1181, 2002.

    Article  Google Scholar 

  22. Matsumoto, S., S. Cho, S. Tosaka, H. Ureshino, T. Maekawa, T. Hara, and K. Sumikawa. Pharmacological preconditioning in type 2 diabetic rat hearts: the roles of mitochondrial atp-sensitive potassium channels and the phosphatidylinositol 3-kinase-akt pathway. Cardiovasc. Drugs Ther. 23:263–270, 2009.

    Article  Google Scholar 

  23. Noma, A. ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148, 1983.

    Article  Google Scholar 

  24. Nygren, A., M. L. Olson, K. Y. Chen, T. Emmett, G. Kargacin, and Y. Shimoni. Propagation of the cardiac impulse in the diabetic rat heart: reduced conduction reserve. J. Physiol. 580:543–560, 2007.

    Article  Google Scholar 

  25. Pandit, S. V., R. B. Clark, W. R. Giles, and S. S. Demir. A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81:3029–3051, 2001.

    Article  Google Scholar 

  26. Pandit, S. V., W. R. Giles, and S. S. Demir. A mathematical model of the electrophysiological alterations in rat ventricular myocytes in type-I diabetes. Biophys. J. 84:832–841, 2003.

    Article  Google Scholar 

  27. Pierce, G. N., and J. C. Russell. Regulation of intracellular Ca2+ in the heart during diabetes. Cardiovasc. Res. 34:41–47, 1997.

    Article  Google Scholar 

  28. Ravingerova, T., R. Stetka, and D. Pancza. Susceptibility to ischemia-induced arrhythmias and the effect of preconditioning in the diabetic rat heart. Physiol. Res. 49:607–616, 2000.

    Google Scholar 

  29. Ravingerova, T., J. Neckar, F. Kolar, R. Stetka, K. Volkovova, A. Ziegelhöffer, and J. Styk. Ventricular arrhythmias following coronary artery occlusion in rats: is the diabetic heart less or more sensitive to ischaemia? Basic Res. Cardiol. 96:160–168, 2001.

    Article  Google Scholar 

  30. Ravingerová, T., A. Adameová, J. Matejíková, T. Kelly, M. Nemčeková, J. Kucharská, O. Pecháňová, and A. Lazou. Subcellular mechanisms of adaptation in the diabetic myocardium: relevance to ischemic preconditioning in the nondiseased heart. Exp. Clin. Cardiol. 15:68–76, 2010.

    Google Scholar 

  31. Sasyniuk, B. I. Concept of reentry versus automaticity. Am. J. Cardiol. 54:A1–A6, 1984.

    Article  Google Scholar 

  32. Seidel, T., A. Salameh, and S. Dhein. A simulation study of cellular hypertrophy and connexin lateralization in cardiac tissue. Biophys. J. 99:2821–2830, 2010.

    Article  Google Scholar 

  33. Shaw, R. M., and Y. Rudy. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Cardiovasc. Res. 35:256–272, 1997.

    Article  Google Scholar 

  34. Shimoni, Y., L. Firek, D. Severson, and W. Giles. Short-term diabetes alters K+ currents in rat ventricular myocytes. Circ. Res. 74:620–628, 1994.

    Article  Google Scholar 

  35. Smeets, J. L., M. A. Allessie, W. J. Lammers, F. I. Bonke, and J. Hollen. The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of heart rate, autonomic transmitters, temperature, and potassium. Circ. Res. 58:96–108, 1986.

    Article  Google Scholar 

  36. Su, H., X. Sun, H. Ma, et al. Acute hyperglycemia exacerbates myocardial ischemia/reperfusion injury and blunts cardioprotective effect of GIK. Am. J. Physiol. Endocrinol. Metab. 293:E629–E635, 2007.

    Article  Google Scholar 

  37. Tsang, A., D. J. Hausenloy, M. M. Mocanu, R. D. Carr, and D. M. Yellon. Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes 54:2360–2364, 2005.

    Article  Google Scholar 

  38. Varró, A., D. A. Lathrop, S. B. Hester, P. P. Nánási, and J. G. Papp. Ionic currents and action potentials in rabbit, rat, and guinea pig ventricular myocytes. Basic Res. Cardiol. 88:93–102, 1993.

    Google Scholar 

  39. Vigmond, E. J., M. Hughes, G. Plank, and L. J. Leon. Computational tools for modeling electrical activity in cardiac tissue. J. Electrocardiol. 36:69–74, 2003.

    Article  Google Scholar 

  40. Whittington, H. J., G. G. Babu, M. M. Mocanu, D. M. Yellon, and D. J. Hausenloy. The diabetic heart: too sweet for its own good? Cardiol. Res. Pract. 2012. doi:10.1155/2012/845698.

    Google Scholar 

  41. Wiegerinck, R. F., A. O. Verkerk, C. N. Belterman, T. A. B. Van Veen, A. Baartscheer, T. Opthof, R. Wilders, J. M. T. De Bakker, and R. Coronel. Larger cell size in rabbits with heart failure increases myocardial conduction velocity and QRS duration. Circulation 113:806–813, 2006.

    Article  Google Scholar 

  42. Winfree, A. T. Electrical turbulence in three-dimensional heart muscle. Science 266:1003–1006, 1994.

    Article  Google Scholar 

  43. Xie, Y., D. Sato, A. Garfinkel, Z. Qu, and J. N. Weiss. So little source, so much sink: requirements for afterdepolarizations to propagate in tissue. Biophys. J. 99:1408–1415, 2010.

    Article  Google Scholar 

  44. Zeevi-Levin, N., Y. D. Barac, Y. Reisner, I. Reiter, G. Yaniv, G. Meiry, Z. Abbasi, S. Kostin, J. Schaper, M. R. Rosen, N. Resnick, and O. Binah. Gap junctional remodeling by hypoxia in cultured neonatal rat ventricular myocytes. Cardiovasc. Res. 66:64–73, 2005.

    Article  Google Scholar 

  45. Zhang, Y., J. Xiao, H. Lin, X. Luo, and H. Wang. Ionic mechanisms underlying abnormal QT prolongation and the associated arrhythmias in diabetic rabbits: a role of rapid delayed rectifier K + current. Cell Physiol. 2007. doi:10.1159/000100642.

    Google Scholar 

Download references

Acknowledgments

This research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC). Funding was provided by Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada.

Conflict of interest

To the best of our knowledge, no conflict of interest, financial or other, exists.

Statement of human and animal studies

The study did not include human or animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghazanfari.

Additional information

Associate Editors Robert L. Abraham and Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazanfari, A., Vigmond, E. & Nygren, A. Arrhythmia Vulnerability in Diabetic Cardiac Tissue is Species-Dependent: Effects of I KATP, Uncoupling, and Connexin Lateralization. Cardiovasc Eng Tech 8, 527–538 (2017). https://doi.org/10.1007/s13239-017-0315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-017-0315-0

Keywords

Navigation