Skip to main content

Advertisement

Log in

Dysfunction Screening in Experimental Arteriovenous Grafts for Hemodialysis Using Fractional-Order Extractor and Color Relation Analysis

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

In physical examinations, hemodialysis access stenosis leading to dysfunction occurs at the venous anastomosis site or the outflow vein. Information from the inflow stenosis, such as blood pressure, pressure drop, and flow resistance increases, allows dysfunction screening from the stage of early clots and thrombosis to the progression of outflow stenosis. Therefore, this study proposes dysfunction screening model in experimental arteriovenous grafts (AVGs) using the fractional-order extractor (FOE) and the color relation analysis (CRA). A Sprott system was designed using an FOE to quantify the differences in transverse vibration pressures between the inflow and outflow sites of an AVG. Experimental analysis revealed that the degree of stenosis (DOS) correlated with an increase in fractional-order dynamic errors (FODEs). Exponential regression was used to fit a non-linear curve and can be used to quantify the relationship between the FODEs and DOS (R 2 = 0.8064). The specific ranges were used to evaluate the stenosis degree, such as DOS: <50, 50–80, and >80%. A CRA-based screening method was derived from the hue angle-saturation-value color model, which describes perceptual color relationships for the DOS. It has a flexibility inference manner with color visualization to represent the different stenosis degrees, which has average accuracy >90% superior to the traditional methods. This in vitro experimental study demonstrated that the proposed model can be used for dysfunction screening in stenotic AVGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Asif, Arif, Florin N. Gadalean, Donna Merrill, Gautam Cherla, Cristian D. Cipleu, David L. Epstein, and David Roth. Inflow stenosis in arteriovenous fistulas and grafts: a multicenter, prospective study. Kidney Int. 67:1986–1992, 2005.

    Article  Google Scholar 

  2. Botti, L., K. Van Canneyt, R. Kaminsky, T. Claessens, R. N. Planken, P. Verdonck, A. Remuzzi, and L. Antiga. Numerical evaluation and experimental validation of pressure drops across a patient-specific model of vascular access for hemodialysis. Cardiovasc Eng Technol 4(4):485–499, 2013.

    Article  Google Scholar 

  3. Chang, K.-C., and M.-F. Yeh. Grey relational analysis based approach for data clustering. IEE Proc. Vis. Image Signal Process. 152(2):165–172, 2005.

    Article  Google Scholar 

  4. Chen, W. L., T. Chen, C. H. Lin, P. J. Chen, and C. D. Kan. Phonoangiography with a fractional order chaotic system-a novel and simple algorithm in analyzing residual arteriovenous access stenosis. Med. Biol. Eng. Comput. 51(9):1011–1019, 2013.

    Article  Google Scholar 

  5. Cohn, J. Arterial compliance to stratify cardiovascular risk: more precision in therapeutic decision making. Am. J. Hypertens. 14(8):S258, 2001.

    Article  Google Scholar 

  6. Du, Y.-C., W.-L. Chen, C.-H. Lin, C.-D. Kan, and M.-J. Wu. Residual stenosis estimation of arteriovenous graft using a dual-channel phonoangiography with fractional-order features. IEEE J. Biomed. Health Inf. 19(2):590–600, 2015.

    Article  Google Scholar 

  7. Du, Y.-C., C.-D. Kan, W.-L. Chen, and C.-H. Lin. Estimation residual stenosis for an arteriovenous shunt using a flexible fuzzy classifier. IEEE Comput. Sci. Eng. 16(6):80–91, 2014.

    Article  Google Scholar 

  8. Gonzalez, R., and R. E. Woods. Digital Image Processing (2nd ed.). Upper Saddle River: Prentice Hall Press, 2002. ISBN ISBN 0-201-18075-8.

  9. Huynh, Thanh N., B. C. Brott, Y. Ito, C. H. Cheng, A. M. Shih, M. Allon, and A. S. Anayiotos. Turbulent flow evaluation of the venous needle during hemodialysis. J. Biomech. Eng. 127:1141–1146, 2005.

    Article  Google Scholar 

  10. Jasti, V., E. Ivan, V. Yalamanchili, N. Wongpraparut, and M. A. Leesar. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation 110(18):2831–2836, 2004.

    Article  Google Scholar 

  11. Kashyap, V. S., R. O. Lakin, L. E. Feiten, P. D. Bishop, and T. P. Sarac. In vivo assessment of endothelial function in human lower extremity arteries. J. Vasc. Surg. 58(5):1259–1266, 2013.

    Article  Google Scholar 

  12. Knuttel, A., and M. Boehlau-Godau. Spatially confined and temporally resolved refractive index and scattering evaluation in human performed with optical coherence tomography. J. Biomed. Opt. 5(1):83–92, 2000.

    Article  Google Scholar 

  13. Kuo, Chao-Lin. Design of an adaptive Fuzzy sliding-mode controller for chaos synchronization. Int. J. Nonlinear Sci. Numer. Simul. 8(4):631–636, 2007.

    Article  Google Scholar 

  14. Kuo, C.-L., C.-H. Lin, H.-T. Yau, and J.-L. Chen. Using self-synchronization error dynamics formulation based controller for maximum photovoltaic power tracking in micro-grid systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3):459–467, 2013.

    Article  Google Scholar 

  15. Lantz, J., R. Gardhagen, and M. Karlsson. Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation. Med. Eng. Phys. 34:1139–1148, 2012.

    Article  Google Scholar 

  16. Leea, S. W., P. F. Fischerb, F. Lotha, T. J. Royston, J. K. Grogan, and H. S. Bassiouny. Flow-induced vein-wall vibration in an arteriovenous graft. J. Fluids Struct. 20(6):837–852, 2005.

    Article  Google Scholar 

  17. Lin, C.-H. Assessment of bilateral photoplethysmography for lower limb peripheral vascular occlusive disease using color relation analysis classifier. Comput. Method Progr. Biomed. 103(3):121–131, 2011.

    Article  Google Scholar 

  18. Longest, P. W., and C. Kleinstreuer. Computational hemodynamics analysis and comparison study of arteriovenous grafts. J. Med. Eng. Technol. 24(3):102–110, 2000.

    Article  Google Scholar 

  19. Manos, T. A., D. P. Sokolis, A. T. Giagini, C. H. Davos, J. D. Kakisis, E. P. Kritharis, N. Stergiopulos, P. E. Karayannacos, and S. Tsangaris. Local hemodynamics and intimal hyperplasia at the venous side of a porcine arteriovenous shunt. IEEE Trans. Inf. Technol. Biomed. 14(3):681–690, 2010.

    Article  Google Scholar 

  20. Misra, Madhukar. The basics of hemodialysis equipment. Hemodial Int 9:30–36, 2005.

    Article  Google Scholar 

  21. Moini, M., M. R. Rasouli, G. M. Williams, S. Najafizadeh, and G. Sheykholeslami. Comparison of side-to-side Brachiocephalic arteriovenous fistula with ligation of the perforating vein with end-to-side Brachiocephalic arteriovenous fistula, Eur. J. Vasc. Endovasc. Surg. 17:7–10, 2009.

    Google Scholar 

  22. Nico, H. J., B. Van Gelder, P. Van der Voort, K. Peels, F. A. L. E. Bracke, H. J. R. M. Bonnier, and M. I. H. EI Gamal. Fractional flow reserve: a useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92(3):183–193, 1995.

    Google Scholar 

  23. Paulson, William D., Sunanda J. Ram, Jack Work, Steven A. Conrad, and Steven A. Jones. Inflow stenosis obscures recognition of outflow stenosis by dialysis venous pressure: analysis by a mathematical model. Nephrol. Dial. Transplant. 23:3966–3971, 2008.

    Article  Google Scholar 

  24. Podlubny, I. Fractional differential equations, Mathematics in Science and Engineering, Chaps 6 and 10, Vol. 198. New York: Academic Press, 1999.

    Google Scholar 

  25. Sebastian, P., Y. V. Voon, and R. Comley. Colour space effect on tracking in video surveillance. Int. J. Electr. Eng. Inform. 2(4):298–312, 2010.

    Article  Google Scholar 

  26. Sigovan, M., V. Rayz, W. Gasper, H. F. Alley, C. D. Owens, and D. Saloner. Vascular remodeling in autogenous arterio-venous fistulas by MRI and CFD. Ann. Biomed. Eng. 41(4):657–668, 2013.

    Article  Google Scholar 

  27. Stalder, A. F., A. Frydrychowicz, M. F. Russe, J. G. Korvink, J. Hennig, K. Li, and M. Markl. Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI. J. Magn. Reson. Imaging 33:839–846, 2011.

    Article  Google Scholar 

  28. Stanziale, R., M. Lodi, E. D’Andrea, F. Sammartino, and V. Dl Luzio. Arteriovenous fistula: end-to-end or end-to-side anastomosis? Hemodial. Int. 15(1):100–103, 2011.

    Article  Google Scholar 

  29. Tordoir, J. H. M. Dialysis: early pre-emptive intervention might reduce AVF access loss. Nat. Rev. Nephrol. 10:9–10, 2014.

    Article  Google Scholar 

  30. Tozzi, Piergiorgio, Antonio Corno, and Daniel Hayoz. Definition of arterial compliance. Am. J. Physiol. Heart Circ. Physiol. 278(4):H1407, 2000.

    Google Scholar 

  31. Van Tricht, I., D. De Wachter, J. Tordoir, and P. Verdonck. Hemodynamics in a compliant hydraulic in vitro model of straight versus tapered PTFE aeterivenous graft. J. Surg. Res. 116(2):297–304, 2004.

    Article  Google Scholar 

  32. Wei, C.-C. Analysis of blood pressure wave based on the viewpoint of resonance and coherence, PhD Thesis, College of Electrical Engineering and Computer Science: National Chiao Tung University, 2006.

Download references

Acknowledgements

This work is supported in part by the research grant of National Cheng Kung University, under contract number: NCKUH-103-05001, duration: January 1, 2014 ~ December 31, 2014 and the Ministry of Science and Technology, Taiwan, under contract number: MOST 103-2221-E-244-001, duration: August 1 2014 ~ July 31 2015.

Conflict of Interest

The author(s) declare(s) that there is no conflict of interests regarding the publication of this article.

Ethical Approval

Not applicable, the study doesn’t involve human subjects, animal subjects, human embryonic stem cell, and use of cells or tissues obtained by commercial sale.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chung-Dann Kan or Chia-Hung Lin.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, MJ., Chen, WL., Kan, CD. et al. Dysfunction Screening in Experimental Arteriovenous Grafts for Hemodialysis Using Fractional-Order Extractor and Color Relation Analysis. Cardiovasc Eng Tech 6, 463–473 (2015). https://doi.org/10.1007/s13239-015-0239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0239-5

Keywords

Navigation