Skip to main content

Advertisement

Log in

Influence of an Arterial Stenosis on the Hemodynamics Within an Arteriovenous Fistula (AVF): Comparison Before and After Balloon-Angioplasty

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The study focuses on arterial stenoses in arteriovenous fistulae (AVF), the occurrence of which was long underestimated. The objective is to investigate their influence on the hemodynamic conditions within the AVF. A numerical simulation of the blood flow is conducted within a patient-specific arteriovenous fistula that presents an 60% stenosis on the inflow artery. In order to find the vessel shape without stenosis and compare the flow conditions with and without stenosis, the endovascular treatment of balloon-angioplasty is simulated by modeling the vessel deformation during balloon inflation implicitly. Clinically, balloon-angioplasty is considered successful if the post-treatment residual degree of stenosis is below 30%. Different balloon inflation pressures have been imposed numerically to obtain residual degrees of stenosis between 30 and 0%. The comparison of the computational fluid dynamic simulations carried out in the patient-specific native geometry and in the treated ones shows that the arterial stenosis has little impact on the blood flow distribution. The venous flow rate remains unchanged as long as thrombosis does not occur: the nominal flow rate needed for hemodialysis is maintained, which is not the case for a venous stenosis. An arterial stenosis, however, causes an increase in the pressure difference across the stenosed region. A residual degree of stenosis below 20% is needed to guarantee a pressure difference lower than 5 mmHg, which is considered to be the threshold stenosis pressure difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. ANSYS Academic Research, Release 13.0, Help System. ANSYS Inc, 2010.

  2. Asif, A., F. N. Gadalean, D. Merrill, G. Cherla, C. D. Cipleu, D. L. Epstein, and D. Roth. Inflow stenosis in arteriovenous fistulas and grafts: a multicenter, prospective study. Kidney Int. 67:1986–1992, 2005.

    Article  Google Scholar 

  3. Asif, A. Endovascular procedures. Contrib. Nephrol. 161:30–38, 2008.

    Article  Google Scholar 

  4. Biuckians, A., B. C. Scott, G. H. Meier, J. M. Panneton, and M. H. Glickman. The natural history of autologous fistulas as first-time dialysis access in the KDOQI era. J. Vasc. Surg. 47:415–421, 2008.

    Article  Google Scholar 

  5. Bogert, L. W. J., and J. J. van Lieshout. Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp. Physiol. 90:437–448, 2005.

    Article  Google Scholar 

  6. Chan, M. R., S. Bedi, R. J. Sanchez, H. N. Young, Y. T. Becker, P. S. Kellerman, and A. S. Yevzlin. Stent placement versus angioplasty improves patency of arteriovenous grafts and blood flow of arteriovenous fistulae. Clin. J. Am. Soc. Nephrol. 3:699–705, 2008.

    Article  Google Scholar 

  7. Coentrpo, L., and L. Turmel-Rodrigues. Monitoring dialysis arteriovenous fistulae: its in our hands. J. Vasc. Access 14(3):209–215, 2013.

    Article  Google Scholar 

  8. Corpataux, J. M., E. Haesler, P. Silacci, H. B. Ris, and D. Hayoz. Low-pressure environment and remodelling of the forearm vein in brescia-cimino haemodialysis access. Nephrol. Dial. Transpl. 17:1057–1062, 2002.

    Article  Google Scholar 

  9. Decorato, I., Z. Kharboutly, T. Vassallo, J. Penrose, C. Legallais, and A.-V. Salsac. Numerical simulation of the fluid–structure interactions in a compliant patient-specific arteriovenous fistula. Int. J. Numer. Methods Biomed. Eng. 30:143–159, 2014.

    Article  Google Scholar 

  10. Dixon, B. S. Why don’t fistulas mature? Kidney Int. 70:1413–1422, 2006.

    Article  Google Scholar 

  11. Duijm, L. E. M., Y. S. Liem, R. van der Rijt, F. J. Nobrega, H. C. M. van der Bosch, P. Douwes-Draaijer, P. W. M. Cuypers, and A. V. Tielbeek. Inflow stenoses in dysfunctional hemodialysis access fistulas and grafts. Am. J. Kidney Dis. 48:98–105, 2006.

  12. Ene-Iordache, B., L. Mosconi, G. Remuzzi, and A. Remuzzi. Computational fluid dynamics of a vascular access case for hemodialysis. J. Biomech. Eng. 123:284–292, 2001.

    Article  Google Scholar 

  13. Fellström, B. C., A. G. Jardine, R. E. Schmieder, H. Holdaas, K. Bannister, J. Beutler, D.-W. Chae, A. Chevaile, S. M. Cobbe, C. Grönhagen-Riska, J. J. De Lima, R. Lins, G. Mayer, A. W. McMahon, H.-H. Parving, G. Remuzzi, O. Samuelsson, S. Sonkodi, G. Süleymanlar, D. Tsakiris, V. Tesar, V. Todorov, A. Wiecek, R. P. Wüthrich, M. Gottlow, E. Johnsson, and F. Zannad. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med., 360:1395–1407, 2009.

  14. Forauer, A. R., E. K. Hoffer, and K. Homa. Dialysis access venous stenoses: treatment with balloon angioplasty1-versus 3-minute inflation times. Radiology, 249(1):375–381, 2008.

    Article  Google Scholar 

  15. Gasser, T. C., and G. A. Holzapfel. Finite element modeling of balloon angioplasty by considering overstretch of remnant non-diseased tissues in lesions. Comput. Mech. 40:47–60, 2007.

    Article  MATH  Google Scholar 

  16. Gervaso, F., C. Capelli, L. Petrini, S. Lattanzio, L. DiVirgilio, and F. Migliavacca. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J. Biomech. 41(6):1206–1212, 2008.

    Article  Google Scholar 

  17. Green, A. E., and J. E. Adkins. Large Elastic Deformations. Oxford University Press, 1970.

  18. Gutierrez, M. A., P. E. Pilon, S. G. Lage, L. Kopel, R. T. Carvalho, and S. S. Furuie. Automatic measurement of carotid diameter and wall thickness in ultrasound images. Comput. Cardiol. 29:359–362, 2002.

    Google Scholar 

  19. Horl, W. H., K. M. Koch, C. Ronco, and J. F. Winchester. Replacement of renal function by dialysis. Kluwer Academic Publishers, 2004.

  20. Jackson, M., N. B. Wood, S. Zhao, A. Augst, J. H. Wolfe, W. M. W. Gedroyc, A. D. Hughes, S. A. M. c. G. Thom, and X. Y. Xu. Low wall shear stress predicts subsequent development of wall hypertrophy in lower limb bypass grafts. Arter. Res. 3:32–38, 2009.

    Article  Google Scholar 

  21. Kharboutly, Z. M. Fenech, J. M. Treutenaere, I. Claude, and C. Legallais. Investigations into the relationship between hemodynamics and vascular alterations in an established arteriovenous fistula. Med. Eng. Phys. 29(9):999–1007, 2007.

    Article  Google Scholar 

  22. Konner, K. History of vascular access for haemodialysis. Nephrol. Dial. Transpl. 20:2629–2635, 2005.

    Article  Google Scholar 

  23. Lee, T., and P. Roy-Chaudhury. Advances and new frontiers in the pathophysiology of venous neointimal hyperplasia and dialysis access stenosis. Adv. Chronic Kidney Dis. 16(5):329–338, 2009.

    Article  Google Scholar 

  24. Maher, E., A. Creane, S. Sultan, N. Hynes, C. Lally, and D. J. Kelly. Inelasticity of human carotid atherosclerotic plaque. Ann. Biomed. Eng. 39:2445–2455, 2011.

    Article  Google Scholar 

  25. Merril, E. W., and G. A. Pelletier. Viscosity of human blood: transition from Newtonian to non-Newtonian. J. Appl. Physiol. 23:178–182, 1967.

    Google Scholar 

  26. Molino, P., C. Cerutti, C. Julien, G. Cusinaud, M. P. Gustin, and C. Paultre. Beat-to-beat estimation of windkessel model parameters in conscious rats. Am. J. Physiol. Heart Circ. Phisiol. 274:H171–H177, 1998.

    Google Scholar 

  27. Niemann, A. K., S. Thrysoe, J. V. Nygaard, J. M. Hasenkam, and S. E. Petersen. Computational fluid dynamics simulation of a-v fistulas: From MRI and ultrasound scans to numeric evaluation of hemodynamics. J. Vasc. Access 13(1):36–44, 2012.

  28. Ozyer, U., A. Harman, E. Yildirim, C. Aytekin, F. Karakayali, and F. Boyvat. Long-term results of angioplasty and stent placement for treatment of central venous obstruction in 126 hemodialysis patients: a 10-year single-center experience. Am. J. Roentgenol. 193:1672–1679, 2009.

    Article  Google Scholar 

  29. Prendergast, P. J., C. Lally, S. Daly, A. J. Reid, T. C. Lee, D. Quinn, and F. Dolan. Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling. J. Biomech. Eng. 125:692–699, 2003.

    Article  Google Scholar 

  30. Rhie, C. M., and W. L. Chow. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21:1525–1532, 1983.

    Article  MATH  Google Scholar 

  31. Salman, L., M. Ladino, M. Alex, R. Dhamija, D. Merrill, O. Lenz, G. Contreras, and A. Asif. Accuracy of ultrasound in the detection of inflow stenosis of arteriovenous fistulae: results of a prospective study. Semin. Dial. 23:117–121, 2010.

    Article  Google Scholar 

  32. Sarnak, M. J. Cardiovascular complications in chronic kidney disease. Am. J. Kidney Dis. 41:11–17, 2003.

    Article  Google Scholar 

  33. Singh, P. K., A. Marzo, C. Staicu, M. G. William, I. Wilkinson, P. V. Lawford, D. A. Rufenacht, P. Bijlenga, A. F. Frangi, R. Hose, U. J. Patel, and S. C. Coley. The effects of aortic coarctation on cerebral hemodynamics and its importance in the etiopathogenesis of intracranial aneurysms. J. Vasc. Int. Neurol. 3:17–30, 2010.

    Google Scholar 

  34. Swinnen, J. Duplex ultrasound scanning of the autogenous arterio venous hemodialysis fistula: a vascular surgeon’s perspective. AJUM 14:17–23, 2011.

    Google Scholar 

  35. Timoshenko, S. P., and J. N. Goodier. Timoshenko and Gore: Theory of Elastic Stability: Theory of Elasticity. McGraw-Hill, 1970.

  36. Tordoir, J. H. M., H. G. Debruin, H. Hoeneveld, B. C. Eikelboom, and P. Kitslaar. Duplex ultrasound scanning in the assessment of arteriovenous fistulas created for hemodiafysis access—comparison with digital subtraction angiography. J. Vasc. Surg. 10:122–128, 1989.

    Article  Google Scholar 

  37. van Tricht, I., D. DeWachter, J. Tordoir, and P. Verdonk. Hemodynamics and complications encountered with arteriovenous fistulas and grafts as vascular access for hemodialysis: a review. Ann. Biomed. Eng. 33:1142–1157, 2005.

  38. Westerhof, N., F. Bosman, C. J. De Vries, and A. Noordergraaf. Analog studies of the human systemic arterial tree. J. Biomech. 2:121–143, 1969.

    Article  Google Scholar 

  39. Yeoh, O. H. Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66:754–771, 1993.

    Article  Google Scholar 

  40. Yerdel, M. A., M. Kesence, K. M. Yazicuoglu ans, Z. Doseyen, A. G. Turkcapar, and E. Anadol. Effect of hemodynamic variables on surgically created arteriovenous fistula flow. Nephrol. Dial. Transpl. 12:1684–1688, 1997.

  41. Young, D. F. Fluid mechanics of arterial stenoses. J. Biomech. Eng. 101:157175, 1979.

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the European Commission, through the MeDDiCA ITN (www.meddica.eu, Marie Curie Actions, grant agreement PITN-GA-2009-238113) and by the French Ministère de la Recherche (Pilcam2 grant). The authors gratefully acknowledge Polyclinique St Côme (Compiègne, FRANCE) for the medical images.

Conflict of Interest

None.

Statement of Human Studies

The clinical images were acquired in 2004 in conformity to the standards of use of medical images (patient consent, secured transfer of anonymized data).

Statement of Animal Studies

N/A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Virginie Salsac.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

MeDDiCA ITN (Marie Curie Actions, grant agreement PITN-GA-2009-238113).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decorato, I., Salsac, AV., Legallais, C. et al. Influence of an Arterial Stenosis on the Hemodynamics Within an Arteriovenous Fistula (AVF): Comparison Before and After Balloon-Angioplasty. Cardiovasc Eng Tech 5, 233–243 (2014). https://doi.org/10.1007/s13239-014-0185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-014-0185-7

Keywords

Navigation