Skip to main content
Log in

Computational Fluid Dynamics and Experimental Characterization of the Pediatric Pump-Lung

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The pediatric pump-lung (PediPL) is a miniaturized integrated pediatric pump-oxygenator specifically designed for cardiac or cardiopulmonary support for patients weighing 5–20 kg to allow mobility and extended use for 30 days. The PediPL incorporates a magnetically levitated impeller with uniquely configured hollow fiber membranes (HFMs) into a single unit capable of performing both pumping and gas exchange. A combined computational and experimental study was conducted to characterize the functional and hemocompatibility performances of this newly developed device. The three-dimensional flow features of the PediPL and its hemolytic characteristics were analyzed using computational fluid dynamics based modeling. The oxygen exchange was modeled based on a convection–diffusion–reaction process. The HFMs were modeled as a porous medium which incorporates the flow resistance in the bundle by an added momentum sink term. The pumping function was evaluated for the required range of operating conditions (0.5–2.5 L/min and 1000–3000 rpm). The blood damage potentials were further analyzed in terms of flow and shear stress fields, and the calculations of hemolysis index. In parallel, the hydraulic pump performance, oxygen transfer, and hemolysis level were quantified experimentally. Based on the computational and experimental results, the PediPL is found to be functional to provide necessary oxygen transfer and blood pumping requirements for the pediatric patients. Smooth blood flow characteristics and low blood damage potential were observed in the entire device. The in vitro tests further confirmed that the PediPL can provide adequate blood pumping and oxygen transfer over the range of intended operating conditions with acceptable hemolytic performance. The rated flow rate for oxygenation is 2.5 L/min. The normalized index of hemolysis is 0.065 g/100 L at 1.0 L/min and 3000 rpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. American Heart Association. Congenital Cardiovascular Defects—Statistics. American Dallas: Heart Association, 2009.

  2. American Society for Testing and Materials. ASTM F1841-97: Standard Practice for Assessment of Hemolysis in Continuous Flow Blood Pumps, 2004.

  3. Arens, J., H. Schnoering, M. Pfennig, I. Mager, J. F. Vázquez-Jiménez, T. Schmitz-Rode, et al. The Aachen MiniHLM—a miniaturized heart–lung machine for neonates with an integrated rotary blood pump. Artif. Organs 34:707–713, 2010.

    Article  Google Scholar 

  4. Baldwin, J. T., H. S. Borovetz, B. W. Duncan, M. J. Gartner, R. K. Jarvik, and W. J. Weiss. The National Heart, Lung, and Blood Institute Pediatric Circulatory Support Program: a summary of the 5-year experience. Circulation 123:1233–1240, 2011.

    Article  Google Scholar 

  5. Baldwin, J. T., H. S. Borovetz, B. W. Duncan, M. J. Gartner, R. K. Jarvik, W. J. Weiss, and T. R. Hoke. The national heart, lung, and blood institute pediatric circulatory support program. Circulation 113:147–155, 2006.

    Article  Google Scholar 

  6. Bartlett, R. H. Extracorporeal life support: history and new directions. Semin. Perinatol. 29:2–7, 2005.

    Article  Google Scholar 

  7. Blackshear, P. L. Mechanical hemolysis in flowing blood. In: Biomechanics: Its Foundation and Objectives, edited by Y. C. Fung. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 501–528.

    Google Scholar 

  8. de Simone, G., R. B. Devereux, S. R. Daniels, G. Mureddu, M. J. Roman, T. R. Kimball, et al. Stroke volume and cardiac output in normotensive children and adults: assessment of relations with body size and impact of overweight. Circulation 95:1837–1843, 1997.

    Google Scholar 

  9. Duncan, B. W., D. J. Bohn, A. M. Atz, J. W. French, P. C. Laussen, and D. L. Wessel. Mechanical circulatory support for the treatment of children with acute fulminant myocarditis. J. Thorac. Cardiovasc. Surg. 122:440–448, 2001.

    Article  Google Scholar 

  10. Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 48:89–94, 1952.

    Google Scholar 

  11. Fraser, K. H., M. E. Taskin, B. P. Griffith, and Z. J. Wu. The use of computational fluid dynamics in the development of ventricular assist devices. Med. Eng. Phys. 33:263–280, 2011.

    Article  Google Scholar 

  12. Haines, N. M., P. T. Rycus, J. B. Zwischenberger, R. H. Bartlett, and A. Undar. Extracorporeal life support registry report 2008: neonatal and pediatric cardiac cases. ASAIO J. 55:111–116, 2009.

    Article  Google Scholar 

  13. International Organization for Standardization. ISO 7199: Cardiovascular Implants and Artificial Organs-Blood Gas Exchangers (Oxygenators), 1st edn., 1996.

  14. James, N. L., C. M. Wilkinson, N. L. Lingard, A. L. Van der Meer, and J. C. Woodard. Evaluation of hemolysis in the VentrAssist implantable rotary blood pump. Artif. Organs 27:108–113, 2003.

    Article  Google Scholar 

  15. Jikuya, T., T. Tsutsui, O. Shigeta, Y. Sankai, and T. Mitsui. Species differences in erythrocyte mechanical fragility: comparison of human, bovine, and ovine cells. ASAIO J. 44:M452–M455, 1998.

    Article  Google Scholar 

  16. Kawahito, S., T. Maeda, T. Motomura, H. Ishitoya, T. Takano, K. Nonaka, et al. Hemolytic characteristics of oxygenators during clinical extracorporeal membrane oxygenation. ASAIO J. 48:636–639, 2002.

    Article  Google Scholar 

  17. Kopp, R., R. Bensberg, J. Arens, U. Steinseifer, T. Schmitz-Rode, R. Rossaint, et al. A miniaturized extracorporeal membrane oxygenator with integrated rotary blood pump: preclinical in vivo testing. ASAIO J. 57:158–163, 2011.

    Article  Google Scholar 

  18. Svitek, R. G., B. J. Frankowski, and W. J. Federspiel. Evaluation of a pumping assist lung that uses a rotating fiber bundle. ASAIO J. 51:773–780, 2005.

    Article  Google Scholar 

  19. Svitek, R. G., D. E. Smith, and J. A. Magovern. In vitro evaluation of the TandemHeart pediatric centrifugal pump. ASAIO J. 53:747–753, 2007.

    Article  Google Scholar 

  20. Taskin, M. E., T. Zhang, B. Gellman, A. Fleischli, K. A. Dasse, B. P. Griffith, et al. Computational characterization of flow and hemolytic performance of the UltraMag(™) blood pump for circulatory support. Artif. Organs 34(12):1099–1113, 2010.

    Article  Google Scholar 

  21. Zhang, T., G. Cheng, A. Koert, J. Zhang, B. Gellman, G. K. Yankey, et al. Functional and biocompatibility performances of an integrated Maglev pump-oxygenator. Artif. Organs 33:36–45, 2009.

    Article  Google Scholar 

  22. Zhang, J., B. Gellman, A. Koert, K. A. Dasse, R. J. Gilbert, B. P. Griffith, et al. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Artif. Organs 30:168–177, 2006.

    Article  Google Scholar 

  23. Zhang, J., T. D. C. Nolan, T. Zhang, B. P. Griffith, and Z. J. Wu. Characterization of membrane blood oxygenation devices using computational fluid dynamics. J. Membr. Sci. 288:268–279, 2007.

    Article  Google Scholar 

  24. Zhang, J., M. E. Taskin, A. Koert, T. Zhang, B. Gellman, K. A. Dasse, et al. Computational design and in vitro characterization of an integrated Maglev pump-oxygenator. Artif. Organs 33:805–817, 2009.

    Article  Google Scholar 

  25. Zhang, T., M. E. Taskin, H. B. Fang, A. Pampori, R. Jarvik, B. P. Griffith, et al. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices. Artif. Organs 2011. doi:10.1111/j.1525-1594.2011.01243.x. [Epub ahead of print].

Download references

Acknowledgments

This study was supported in part by the National Institutes of Health (Contract Number: HHSN268201000014C and Grant Numbers: R42HL084807, R01HL082631, R01HL088100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjun J. Wu.

Additional information

Associate Editor Keefe B. Manning oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z.J., Gellman, B., Zhang, T. et al. Computational Fluid Dynamics and Experimental Characterization of the Pediatric Pump-Lung. Cardiovasc Eng Tech 2, 276–287 (2011). https://doi.org/10.1007/s13239-011-0071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0071-5

Keywords

Navigation