Skip to main content

Advertisement

Log in

Genetic and genomic resources for improving proso millet (Panicum miliaceum L.): a potential crop for food and nutritional security

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

A Correction to this article was published on 29 September 2020

This article has been updated

Abstract

Proso millet (Panicum miliaceum L.) is a food crop domesticated around 10,000 years ago, that has been prevalent throughout ancient civilization. However, use of millets in the diets has drastically been reduced owing to the addition of cereals such as rice and wheat. At present, proso millet is being cultivated and consumed by a marginal population. Irrespective of the lack of popularity, the crop is well known for its climate resilience traits as well as nutritional properties. Noteworthy, the crop is low on glycemic index, gluten-free, possesses good quality protein, vitamins, minerals, and other nutraceutical properties. Being a C4 panicoid species, proso millet possesses better water-use and nitrogen-use efficiency, thus promising this as an ideal crop for cultivation in the scenario of global climate change. The extent of food insecurity among the ever-growing population, as well as the prevalence of malnutrition and undernutrition among the children, reinstate the requirement of a nutritious diet that millets and other traditionally important crops can address. Given this, the present review enumerates the progress made in genetics, genomics, and other omics of proso millet that would pave way for improvement using biotechnological as well as breeding interventions. Further, this review elaborates a roadmap for improving this crop in the mainstream cropping system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. AICRP on Small Millets. Improved production technology for proso millet. GKVK, Bengaluru; 2017–2018.

  2. AICRPSM. Introduction. 2020. http://www.aicrpsm.res.in/About%20Us/Introduction/Introduction.pdf. Accessed 24 May 2020.

  3. Alexandratos N, Bruinsma J. World agriculture towards 2030/2050: the 2012 revision. 2012.

  4. Al-Khayri JM, Jain SM, Johnson DV. Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Berlin: Springer; 2016.

    Google Scholar 

  5. Amadou I, Gounga ME, Le G-W. Millets: Nutritional composition, some health benefits and processing-A review. Emir J Food Agric 2013;25(7):501–8

    Google Scholar 

  6. Araki M, Numaoka A, Kawase M, Fukunaga K. Origin of waxy common millet, Panicum miliaceum L., Japan. Genet Resour Crop Evol. 2012;59(7):1303–8.

    Google Scholar 

  7. Asharani V, Jayadeep A, Malleshi N. Natural antioxidants in edible flours of selected small millets. Int J Food Prop. 2010;13(1):41–50.

    CAS  Google Scholar 

  8. Baltensperger D, Lyon DJ, Anderson R, Holman T, Stymieste C, Shanahan J, et al. EC95-137 producing and marketing proso millet in the high plains. Lincoln: Historical Materials from University of Nebraska-Lincoln Extension; 1995. p. 709.

    Google Scholar 

  9. Baltensperger DD. Progress with proso, pearl and other millets. In: Trends in new crops and new uses. 2002:100–3.

  10. Barton L, Newsome SD, Chen F-H, Wang H, Guilderson TP, Bettinger RL. Agricultural origins and the isotopic identity of domestication in northern China. Proc Natl Acad Sci. 2009;106(14):5523–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bettinger RL, Barton L, Morgan C, Chen F, Wang H, Guilderson TP, et al. The transition to agriculture at Dadiwan, People’s Republic of China. Curr Anthropol. 2010;51(5):703–14.

    Google Scholar 

  12. Cao X, Wang J, Wang H, Liu S, Chen L, Tian X, et al. The complete chloroplast genome of Panicum miliaceum. Mitochondrial DNA Part B. 2017;2(1):43–5.

    PubMed  PubMed Central  Google Scholar 

  13. Chandrasekara A, Naczk M, Shahidi F. Effect of processing on the antioxidant activity of millet grains. Food Chem. 2012;133(1):1–9.

    CAS  Google Scholar 

  14. Changmei S, Dorothy J. Millet-the frugal grain. Int J Sci Res Rev. 2014;3(4):75–90.

    Google Scholar 

  15. Cho Y-I, Chung J-W, Lee G-A, Ma K-H, Dixit A, Gwag J-G, et al. Development and characterization of twenty-five new polymorphic microsatellite markers in proso millet (Panicum miliaceum L.). Genes Genomics. 2010;32(3):267–73.

    CAS  Google Scholar 

  16. Christenhusz MJ, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261(3):201–17.

    Google Scholar 

  17. Colosi JC, Schaal BA. Wild proso millet (Panicum miliaceum) is genetically variable and distinct from crop varieties of proso millet. Weed Sci. 1997;45(4):509–18.

    CAS  Google Scholar 

  18. Das S, Khound R, Santra M, Santra DK. Beyond bird feed: proso millet for human health and environment. Agriculture. 2019;9(3):64.

    CAS  Google Scholar 

  19. Delost-Lewis K, Lorenz K, Tribelhorn R. Puffing quality of experimental varieties of proso millets (Panicum miliaceum). Cereal Chem. 1992;69(4):359–65.

    CAS  Google Scholar 

  20. Deshpande S, Mohapatra D, Tripathi M, Sadvatha R. Kodo millet: nutritional value and utilization in Indian foods. J Grain Proc Storage. 2015;2(2):16–23.

    Google Scholar 

  21. Devisetti R, Yadahally SN, Bhattacharya S. Nutrients and antinutrients in foxtail and proso millet milled fractions: evaluation of their flour functionality. LWT Food Sci Technol. 2014;59(2):889–95.

    CAS  Google Scholar 

  22. Doggett H. Small millets—a selective overview. New Delhi: Small Millets in Global Agriculture Oxford and Ibh Publishing; 1989. p. 3–17.

    Google Scholar 

  23. FAOSTAT. 2020. http://www.fao.org/faostat/en/#data/QC. Accessed 25 May 2020.

  24. Gomeshe S. Proso millet, Panicum miliaceum (L.): genetic improvement and research needs. In: Patil JV, editor. Millets and sorghum biology and genetic improvement. Hoboken: Wiley; 2016. p. 150–79.

    Google Scholar 

  25. Graybosch RA, Baltensperger D. Evaluation of the waxy endosperm trait in proso millet (Panicum miliaceum). Plant Breed. 2009;128(1):70–3.

    CAS  Google Scholar 

  26. Guedes JDA. Millets, rice, social complexity, and the spread of agriculture to the Chengdu Plain and Southwest China. Rice. 2011;4(3–4):104–13.

    Google Scholar 

  27. Gupta A. Improvement of millets and pseudo-cereals for rainfed agriculture in hill region. Sustainable production from agricultural watersheds in North West Himalaya, Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttaranchal, India. 2006:163–74.

  28. Gupta A, Sood S, Agrawal PK, Bhatt JC. Floral biology and pollination system in small millets. Eur J Plant Sci Biotechnol. 2011;6:81–6.

    Google Scholar 

  29. Gupta H, Gupta A. Agro-biodiversity in the food crops of North Western Himalayas. Agrobiodivers Crop Genetic Resourc Conserv. 2007;1:139–46.

    Google Scholar 

  30. Habiyaremye C, Matanguihan JB, D’AlpoimGuedes J, Ganjyal GM, Whiteman MR, Kidwell KK, et al. Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, US: a review. Front Plant Sci. 2017;7:1961.

    PubMed  PubMed Central  Google Scholar 

  31. Hoogeveen J, Faurès J-M, Peiser L, Burke J, de Giesen NV. GlobWat—a global water balance model to assess water use in irrigated agriculture. Hydrol Earth Syst Sci. 2015;12(1):801–38.

    Google Scholar 

  32. Hou S, Sun Z, Li Y, Wang Y, Ling H, Xing G, et al. Transcriptomic analysis, genic SSR development, and genetic diversity of proso millet (Panicum miliaceum; Poaceae). Appl Plant Sci. 2017;5(7):1600137.

    Google Scholar 

  33. Hu X, Wang J, Lu P, Zhang H. Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. J Genet Genom. 2009;36(8):491–500.

    CAS  Google Scholar 

  34. Hunt HV, Badakshi F, Romanova O, Howe CJ, Jones MK, Heslop-Harrison JP. Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum. J Exp Bot. 2014;65(12):3165–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hunt HV, Campana MG, Lawes MC, Park YJ, Bower MA, Howe CJ, et al. Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Mol Ecol. 2011;20(22):4756–71.

    PubMed  PubMed Central  Google Scholar 

  36. Hunt HV, Moots HM, Graybosch RA, Jones H, Parker M, Romanova O, et al. Waxy phenotype evolution in the allotetraploid cereal broomcorn millet: mutations at the GBSSI locus in their functional and phylogenetic context. Mol Biol Evol. 2013;30(1):109–22.

    CAS  PubMed  Google Scholar 

  37. Hunt HV, Vander Linden M, Liu X, Motuzaite-Matuzeviciute G, Colledge S, Jones MK. Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg Hist Archaeobot. 2008;17(1):5.

    PubMed  PubMed Central  Google Scholar 

  38. IIMR. http://www.millets.res.in/millets_info.php. Accessed 10 April 2020.

  39. Indiastat. Agriculture-data. https://www.indiastat.com/agriculture-data/2/agricultural-production/225/small-millets/968772/stats.aspx. Accessed 21 May 2020.

  40. Jain A, Amrita T. Evaluation of promising genotypes of proso millet against banded leaf and sheath blight disease caused by Rhizoctonia solani Kuhn. Mysore J Agric Sci. 2013;47(3):648–50.

    Google Scholar 

  41. Joel JA, et al. A fundamentals of crop botany: directorate of open and distance learning. Coimbatore: TNAU; 2006.

    Google Scholar 

  42. Juliano B. The chemical basis of rice grain quality. Chemical aspects of rice grain quality. 1979:69–90.

  43. Kalaisekar A, Padmaja P, Bhagwat V, Patil J. Insect pests of millets: systematics, bionomics, and management. Cambridge: Academic Press; 2016.

    Google Scholar 

  44. Kalinova J, Moudry J. Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum Nutr. 2006;61(1):43.

    Google Scholar 

  45. Karam D, Westra P, Niessen SJ, Ward SM, Figueiredo JEF. Assessment of silver-stained AFLP markers for studying DNA polymorphism in proso millet (Panicum miliaceum L.). Braz J Bot. 2006;29(4):609–15.

    CAS  Google Scholar 

  46. Karam D, Westra P, Nissen S, Ward S, Figueiredo J. Genetic diversity among proso millet (Panicum miliaceum) biotypes assessed by AFLP technique. Plantadaninha. 2004;22(2):167–74.

    Google Scholar 

  47. Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, et al. Development of eSSR-markers in Setariaitalica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PLoS ONE. 2013;8(6):e67742.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kushwaha H, Jillo KW, Singh VK, Kumar A, Yadav D. Assessment of genetic diversity among cereals and millets based on PCR amplification using Dof (DNA binding with One Finger) transcription factor gene-specific primers. Plant Syst Evol. 2015;301(2):833–40.

    Google Scholar 

  49. Lágler R, Gyulai G, Humphreys M, Szabó Z, Horváth L, Bittsánszky A, et al. Morphological and molecular analysis of common millet (P. miliaceum) cultivars compared to an aDNA sample from the 15th century (Hungary). Euphytica. 2005;146(1–2):77–85.

    Google Scholar 

  50. Léder I. Sorghum and millets. In: Cultivated plants, primarily as food sources. 2004;1:66–84.

  51. Liu C, Kong Z, Lang S. Plant remains at the Dadiwan site and a discussion of human adaptation to the environment. ZhongyuanWenwu. 2004;4:26–30.

    Google Scholar 

  52. Liu M, Xu Y, He J, Zhang S, Wang Y, Lu P. Genetic diversity and population structure of broomcorn millet (Panicum miliaceum L.) cultivars and landraces in China based on microsatellite markers. Int J Mol Sci. 2016;17(3):370.

    PubMed  PubMed Central  Google Scholar 

  53. Lu H, Yang X, Ye M, Liu K-B, Xia Z, Ren X, et al. Millet noodles in late Neolithic China. Nature. 2005;437(7061):967–8.

    CAS  PubMed  Google Scholar 

  54. Lu H, Zhang J, Liu K-B, Wu N, Li Y, Zhou K, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci. 2009;106(18):7367–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Luis E, Sullivan T, Nelson L. Nutritional value of proso millets, sorghum grains, and corn in turkey starter diets. Poult Sci. 1982;61(2):321–6.

    CAS  Google Scholar 

  56. Lyon DJ, Burgener PA, DeBoer K. EC08-137 producing and marketing proso millet in the great plains. 2008.

  57. McSweeney M. Proso millet as an ingredient in foods common to North Americans 2014.

  58. Mohamed T, Issoufou A, Zhou H. Antioxidant activity of fractionated foxtail millet protein hydrolysate. Int Food Res J. 2012;19(1):207.

    CAS  Google Scholar 

  59. M’ribu H, Hilu K. Detection of interspecific and intraspecific variation in Panicum millets through random amplified polymorphic DNA. Theor Appl Genet. 1994;88(3–4):412–6.

    PubMed  Google Scholar 

  60. Nandini C, Bhat S. Modified crossing (SMUASB) method for artificial hybridization in proso millet (Panicum miliaceum L.) and Little millet (Panicum sumatrense). Electron J Plant Breed. 2019;10(3):1161–70.

    Google Scholar 

  61. Nelson L. Technique for crossing proso millet 1. Crop Sci. 1984;24(1):205–6.

    Google Scholar 

  62. Nie X, Zhao X, Wang S, Zhang T, Li C, Liu H, et al. Complete chloroplast genome sequence of Broomcorn Millet (Panicum miliaceum L.) and comparative analysis with other Panicoideae species. Agronomy. 2018;8(9):159.

    CAS  Google Scholar 

  63. Nishizawa N, Fudamoto Y. The elevation of plasma concentration of high-density lipoprotein cholesterol in mice fed with protein from proso millet. Biosci Biotechnol Biochem. 1995;59(2):333–5.

    CAS  PubMed  Google Scholar 

  64. Park K-O, Ito Y, Nagasawa T, Choi M-R, Nishizawa N. Effects of dietary Korean proso-millet protein on plasma adiponectin, HDL cholesterol, insulin levels, and gene expression in obese type 2 diabetic mice. Biosci Biotechnol Biochem. 2008;72(11):2918–25.

    CAS  PubMed  Google Scholar 

  65. POPOV G. The importance of cross pollination in plant breeding. Liet. zemdirb.mohsl.tyrimo inst.darbai. 1970;14:23–30.

  66. Rajput SG, Plyler-Harveson T, Santra DK. Development and characterization of SSR markers in proso millet based on switchgrass genomics. Am J Plant Sci 2014;5(1):175–86.

    CAS  Google Scholar 

  67. Rajput SG, Santra DK, Schnable J. Mapping QTLs for morpho-agronomic traits in proso millet (Panicum miliaceum L.). Mol Breed. 2016;36(4):37.

    Google Scholar 

  68. Rao BR, Nagasampige MH, Ravikiran M. Evaluation of nutraceutical properties of selected small millets. J Pharm Bioallied Sci. 2011;3(2):277.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rao M. The small millets: their importance, present status and outlook. Small Millets. 1989.

  70. Rose DJ, Santra DK. Proso millet (Panicum miliaceum L.) fermentation for fuel ethanol production. Ind Crops Prod. 2013;43:602–5.

    CAS  Google Scholar 

  71. Sabir P, Ashraf M, Akram N. Accession variation for salt tolerance in proso millet (Panicum miliaceum L.) using leaf proline content and activities of some key antioxidant enzymes. J Agron Crop Sci. 2011;197(5):340–7.

    CAS  Google Scholar 

  72. Saha D, Gowda MC, Arya L, Verma M, Bansal KC. Genetic and genomic resources of small millets. Crit Rev Plant Sci. 2016;35(1):56–79.

    CAS  Google Scholar 

  73. Sampath T, Razvi S, Singh D, Bondale K. Small millets in Indian agriculture. In: Small millets in global agriculture. 1989:33–44.

  74. Santra D, Heyduck R, Baltensperger D, Graybosch R, Nelson L, Frickel G, et al. Registration of ‘Plateau’waxy (amylose-free) proso millet. J Plant Regist. 2015;9(1):41–3.

    Google Scholar 

  75. Santra DK, Khound R, Das S. Proso millet (Panicum miliaceum L.) breeding: progress, challenges and opportunities. Advances in plant breeding strategies: cereals. Berlin: Springer; 2019. p. 223–57.

    Google Scholar 

  76. Seghatoleslami M, Kafi M, Majidi E. Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pak J Bot. 2008;40(4):1427–32.

    Google Scholar 

  77. Soldatov A, Agafonov N. Susceptibility of Panicum millet to melanosis in western Kazakhstan. Trudy po Prikladnoĭ Botanike, Genetike i Selektsii. 1980;69(1):64–9.

    Google Scholar 

  78. Subramanian V, Metta V. Sorghum grain for poultry feed. Technical and institution options for sorghum grain mold management proc international consultation. In: Chandrasher A, Bandyopadhayi R and Hall AJ (eds) International crop research for the semi-arid tropics (ICRISAT) patacheru. 2000:502–4.

  79. Taniguchi M, Sugiyama T. Isolation, characterization and expression of cDNA clones encoding a mitochondrial malate translocator from Panicum miliaceum L. Plant Mol Biol. 1996;30(1):51–64.

    CAS  PubMed  Google Scholar 

  80. TNAU agritech portal. http://agritech.tnau.ac.in/agriculture/minormillets_panivaragu.html. Accessed 9 April 2020.

  81. Trivedi A, Arya L, Verma M, Verma S, Tyagi R, Hemantaranjan A. Genetic variability in proso millet [Panicum miliaceum] germplasm of Central Himalayan Region based on morpho-physiological traits and molecular markers. Acta Plant. 2015;37(2):23.

    Google Scholar 

  82. Upadhyaya H, Sharma S, Gowda C, Reddy VG, Singh S. Developing proso millet (Panicum miliaceum L.) core collection using geographic and morpho-agronomic data. Crop Pasture Sci. 2011;62(5):383–9.

    Google Scholar 

  83. Upadhyaya HD, Vetriventhan M. Underutilized climate-smart nutrient rich small millets for food and nutritional security. 2018. 109–120.

  84. Upadhyaya HD, Vetriventhan M, Dwivedi SL, Pattanashetti SK, Singh SK. Proso, barnyard, little, and kodo millets. In: Genetic and genomic resources for grain cereals improvement. Elsevier; 2016. p. 321–43.

  85. Varshney RK, Sinha P, Singh VK, Kumar A, Zhang Q, Bennetzen JL. 5Gs for crop genetic improvement. Curr Opin Plant Biol. 2020;13:1–7.

    Google Scholar 

  86. Vetriventhan M, Upadhyaya HD. Diversity and trait-specific sources for productivity and nutritional traits in the global proso millet (Panicum miliaceum L.) germplasm collection. Crop J. 2018;6(5):451–63.

    Google Scholar 

  87. Vilas ATVB, Kannababu N, Elangovan M, Umakanth AVRK, et al. Millet seed technology: seed production, quality control & legal compliance. Hyderabad: Society for Millets Research and ICAR-Indian Institute of Millets Research; 2015.

    Google Scholar 

  88. Wang R, Hunt HV, Qiao Z, Wang L, Han Y. Diversity and cultivation of broomcorn millet (Panicum miliaceum L.) in China: a review. Econ Bot. 2016;70(3):332–42.

    Google Scholar 

  89. Wu Y, Du J, Wang X, Fang X, Shan W, Liang Z. Computational prediction and experimental verification of miRNAs in Panicum miliaceum L. Sci China Life Sci. 2012;55(9):807–17.

    PubMed  Google Scholar 

  90. Yue H, Wang L, Liu H, Yue W, Du X, Song W, et al. De novo assembly and characterization of the transcriptome of broomcorn millet (Panicum miliaceum L.) for gene discovery and marker development. Front Plant Sci. 2016;7:1083.

    PubMed  PubMed Central  Google Scholar 

  91. Yue H, Wang M, Liu S, Du X, Song W, Nie X. Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet (Panicum miliaceum L.). BMC Genom. 2016;17(1):343.

    Google Scholar 

  92. Zhang J, Lu H, Liu M, Diao X, Shao K, Wu N. Phytolith analysis for differentiating between broomcorn millet (Panicum miliaceum) and its weed/feral type (Panicum ruderale). Sci Rep. 2018;8(1):1–9.

    Google Scholar 

  93. Zhang L, Liu R, Niu W. Phytochemical and antiproliferative activity of proso millet. PLoS ONE. 2014;9(8):e104058.

    PubMed  PubMed Central  Google Scholar 

  94. Zhao Z. Flotation results from the Xinglonggou site, North China and the problem of dryland agricultural origins. Antiquities of Eastern Asia. 2005:188–99.

  95. Zhou Y, Qu Y, Zhu M, Liu J, Wang Y, Song H, et al. Genetic diversity and virulence variation of Sporisorium destruens isolates and evaluation of broomcorn millet for resistance to head smut. Euphytica. 2016;211(1):59–70.

    CAS  Google Scholar 

  96. Zohary D, Hopf M, Weiss E. Domestication of Plants in the Old World: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University Press on Demand; 2012.

  97. Zou C, Li L, Miki D, Li D, Tang Q, Xiao L, et al. The genome of broomcorn millet. Nat Commun. 2019;10(1):1–11.

    Google Scholar 

Download references

Acknowledgements

Authors’ work in the area of small millets is supported by Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravikesavan Rajasekaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding editor: Manoj Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekaran, R., Francis, N. Genetic and genomic resources for improving proso millet (Panicum miliaceum L.): a potential crop for food and nutritional security. Nucleus 64, 21–32 (2021). https://doi.org/10.1007/s13237-020-00331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-020-00331-2

Keywords

Navigation