Skip to main content
Log in

Do Social Status Seeking Behaviors Worsen the Tragedy of the Commons?

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

The present paper considers the exploitation of a common-property, nonrenewable resource, by individuals concerned with their social status. Assuming that the social status is reflected by the individuals’ relative consumptions, we formalize this motivation by means of a utility function, depending on the individual’s actual consumption and on the consumption level he aspires, the latter being related to the consumptions in his reference group. We compare the benchmark cooperative solution with a noncooperative Markov-perfect Nash equilibrium. We confirm, under more general conditions than in the existing literature, that the individuals’ concern for social status exacerbates the tragedy of the commons. We finally discuss the policy implications and provide a taxation scheme capable of implementing the cooperative solution as a noncooperative Markov-perfect Nash equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The agents can only choose strategies that allow the other players’ plans to be satisfied, given the exhaustion constraint.

  2. The agents are allowed to choose strategies that may frustrate the other players’ plans, due to the exhaustion constraint.

  3. Importantly, remark that this literature relies on simple specifications, using isoelactic utility functions.

  4. This last result holds only if extraction is costly. With costless extraction, no impact on the resource exploitation is found.

  5. In this respect, Katayama and Long [20] and Long and McWhinnie [25] use more general models than ours since we consider neither capital stock nor natural growth of resource. Hence, our generalization is limited to the representation of individuals’ social status and preference.

  6. We do not consider open-loop Nash equilibria. The advantage of Markov-perfect Nash equilibria is that they satisfy the condition of subgame perfectness [10].

  7. An anonymous referee remarks that the results presented here can be related with Rincon-Zapatero et al. [34] and Rincon-Zapatero [33], dealing with the characterization of Nash equilibria in differential games by means of a system of partial differential equations. Indeed, they illustrate their results with an application to nonrenewable resources games. Although some similarities exist, Rincon-Zapatero et al. [34] and Rincon-Zapatero [33] did not obtain the characterization proposed here, due to their focus on finite-horizon problems.

  8. Here, we use the notation: c i (t)=(c 1(t),…,c i−1(t),c i+1(t),…,c n (t)).

  9. Here and below, v 1(c i ,y i ) and v 2(c i ,y i ) denote the first and second derivatives of v(c i ,y i ), respectively.

  10. Remark that if v 2(c i ,y i )=0, for all c i and y i , we obtain the standard common-pool model of exploitation of an exhaustible resource, as a special case of our model.

  11. Note that α=0 in the special case where v 2(c i ,y i )=0, for all c i and y i .

  12. In a competitive economy, Arrow and Dasgupta [3] prove that this condition implies that the socially optimal and market equilibrium paths coincide.

  13. Katayama and Long [20] and Long and McWhinnie [25] consider specifications such that, implicitly, u(c) belongs to the family of isoelastic utility functions.

  14. Here, in saying that c is decreasing in σ(⋅), we mean that when comparing two problems only differing with respect to their elasticity of marginal utility, σ 1(⋅) and σ 2(⋅) (say), the optimal consumption c will be smaller in the second problem when σ 1(c)<σ 2(c) for all c.

  15. As α<1, we have (n−1+α)/n<1. Thus, examples of standard utility functions satisfying this condition are u(c)=ln(c) and (c 1−μ−1)/(1−μ) with μ>1.

  16. Here, in saying that c is decreasing in σ(⋅), we mean that if two problems only differ with respect to their elasticity of marginal utility, σ 1(⋅) and σ 2(⋅) (say), the noncooperative consumption will be smaller in the second problem when σ 1(c)<σ 2(c) for all c.

  17. Of course, the assumption that φ i (⋅)=ϕ i (⋅) seems natural. However, by definition, it means that the social planner has perfect information on the individuals’ reference groups and on the way they determine their aspiration levels. This seems a very demanding assumption. It is thus worth noticing that this assumption is not necessary to obtain our implementation result.

References

  1. Alpizar F, Carlsson F, Johansson-Stenman O (2005) How much do we care about absolute versus relative income and consumption? J Econ Behav Organ 56:405–421

    Article  Google Scholar 

  2. Alvarez-Cuadrado F, Long NV (2008) Relative consumption and resource extraction. Working Paper 2008s-27, Cirano

  3. Arrow KJ, Dasgupta PS (2009) Conspicuous consumption, inconspicuous leisure. Econ J 119(541):497–516

    Article  Google Scholar 

  4. Becker GS (1974) A theory of social interactions. J Polit Econ 82(6):1063–1093

    Article  Google Scholar 

  5. Bolle F (1986) On the oligopolistic extraction of non-renewable common-pool resources. Economica 53(212):519–527

    Article  Google Scholar 

  6. Brekke KA, Howarth RB (2002) Status, growth and the environment. Edward Elgard, Cheltenham

    Google Scholar 

  7. Carroll C et al. (1997) Comparison utility in a growth model. J Econ Growth 2:339–367

    Article  MATH  Google Scholar 

  8. Clark AE, Oswald AJ (1996) Satisfaction and comparison income. J Public Econ 61:359–381

    Article  Google Scholar 

  9. Clark AE, Frijters P, Shields MA (2008) Relative income, happiness, and utility: an explanation for the Easterlin paradox and other puzzles. J Econ Lit 46(1):95–144

    Article  Google Scholar 

  10. Dockner E et al. (2000) Differential games in economics and management science. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  11. Duesenberry JS (1949) Income, saving, and the theory of consumer behavior. Cambridge, MA

  12. Dupor B, Liu W-F (2003) Jealousy and equilibrium overconsumption. Am Econ Rev 93(1):423–428

    Article  Google Scholar 

  13. Easterlin R (1974) Does economic growth improve the human lot? Some empirical evidence. In: David PA, Reder M (eds) Nations and households in economic growth: essays in honor of Moses Abramowitz. Academic Press, New York, pp 89–125

    Google Scholar 

  14. Easterlin R (1995) Will raising the incomes of all increase the happiness of all? J Econ Behav Organ 47:35–47

    Article  Google Scholar 

  15. Easterlin R (2001) Income and happiness: toward a unified theory. Econ J 111:465–484

    Article  Google Scholar 

  16. Frank RH (1985) The demand for unobservable and other nonpositional goods. Am Econ Rev 75(1):101–116

    Google Scholar 

  17. Galí J (1994) Keeping up with the Joneses: consumption externalities, portfolio choice, and asset prices. J Money Credit Bank 26(1):1–8

    Article  Google Scholar 

  18. Hollander H (2001) On the validity of utility statements: standard theory versus Duesenberry’s. J Econ Behav Organ 45:227–249

    Article  Google Scholar 

  19. Howarth RB (1996) Status effects and environmental externalities. Ecol Econ 16:25–34

    Article  Google Scholar 

  20. Katayama S, Long NV (2010) A dynamic game of status-seeking with public capital and an exhaustible resource. Optim Control Appl Methods 31:43–53

    MATH  MathSciNet  Google Scholar 

  21. Liebenstein H (1950) Bandwagon, snob, and veblen effects in the theory of consumers’ demand. Q J Econ 64(2):183–207

    Article  Google Scholar 

  22. Ljungqvist L, Uhlig H (2000) Tax policy and aggregate demand management under catching up with the Joneses. Am Econ Rev 90(3):356–366

    Article  Google Scholar 

  23. Long NV (2011) Dynamic games in the economics of natural resources: a survey. Dyn Games Appl 1:115–148

    Article  MATH  MathSciNet  Google Scholar 

  24. Long NV (2010) Dynamic games in economics: a survey. World Scientific, Singapore

    Book  Google Scholar 

  25. Long NV, McWhinnie S (2012) The tragedy of the commons in a fishery when relative performance matters. Ecol Econ 81:140–154

    Article  Google Scholar 

  26. Long NV, Shimomura K (1998) Some results on the Markov equilibria of a class of homogeneous differential games. J Econ Behav Organ 33:557–566

    Article  Google Scholar 

  27. Long NV, Shimomura K, Takahashi H (1999) Comparing open loop and Markov-perfect equilibria in a class of differential games. Jpn Econ Rev 50(4):457–469

    Article  Google Scholar 

  28. Luttmer RFP (2005) Neighbors as negatives: relative earnings and well-being. Q J Econ 120(3):963–1002

    Google Scholar 

  29. McAdams RH (1992) Relative preferences. Yale Law J 102(1):1–104

    Article  Google Scholar 

  30. McMillan J, Sinn HW (1984) Oligopolistic extraction of a common property resource: dynamic equilibria. In: Kemp MC, Long NV (eds) Essays in the economics of exhaustible resources. North-Holland, Amsterdam, pp 89–125

    Google Scholar 

  31. Ng YK, Wang J (1993) Relative income, aspiration, environmental quality, individual and political myopia: why may the rat race for material growth be welfare reducing? Math Soc Sci 26:3–23

    Article  MathSciNet  Google Scholar 

  32. Pollak RA (1976) Interdependent preferences. Am Econ Rev 66(3):309–320

    MathSciNet  Google Scholar 

  33. Rincon-Zapatero JP (2004) Characterization of Markovian equilibria in a class of differential games. J Econ Dyn Control 28:1243–1266

    Article  MATH  MathSciNet  Google Scholar 

  34. Rincon-Zapatero JP, Martinez J, Martin-Herran G (1998) New method to characterize subgame perfect Nash equilibria in differential games. J Optim Theory Appl 96(2):377–395

    Article  MATH  MathSciNet  Google Scholar 

  35. Sinn HW (1984) Common property resources, storage facilities and ownership structures: a Cournot model of the oil market. Economica 51(203):235–252

    Article  Google Scholar 

  36. Smith A (1759) The theory of moral sentiments

  37. Veblen T (1899) The theory of the leisure class: an economic study of institutions

  38. Weiss Y, Fershtman C (1998) Social status and economic performance: a survey. Eur Econ Rev 42:801–820

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Rouillon.

Appendix

Appendix

1.1 A.1 Proof of Lemma 1

Consider any vector of individual consumptions \(C ( t ) = ( c_{i} ( t ) ) _{i=1}^{n}\). Recall that \(V ( C ( t ) ) =\sum_{i=1}^{n}v ( c_{i} ( t ) ,\phi _{i} ( c_{-i} ( t ) ) ) \). Let \(\overline {C} ( t ) = ( \overline{c}_{i} ( t ) ) _{i=1}^{n}= ( \sum_{i=1}^{n}c_{i} ( t ) /n ) _{i=1}^{n}\) represent the equal redistribution of \(C ( t ) = ( c_{i} ( t ) ) _{i=1}^{n}\). We need to show that if \(C ( t ) \neq \overline{C} ( t ) \), then \(V ( \overline{C} ( t ) ) >V ( C ( t ) ) \).

By definition,

$$ V \bigl( \overline{C} ( t ) \bigr) =\sum_{i=1}^{n}v \bigl( \overline{c}_{i} ( t ) ,\phi_{i} \bigl( \overline{c}_{-i} ( t ) \bigr) \bigr). $$
(8)

Since the consumption vector \(\overline{C} ( t ) = ( \sum_{i=1}^{n}c_{i} ( t ) /n ) _{i=1}^{n}\) is symmetric, we have (by Assumption 1(b))

$$ \overline{c}_{i} ( t ) =\phi_{i} \bigl( \overline{c}_{-i} ( t ) \bigr) =\sum_{i=1}^{n}c_{i} ( t ) /n\quad \text{for all }i. $$

Substituting into (8), we get

$$\begin{aligned} V \bigl( \overline{C} ( t ) \bigr) =&\sum_{i=1}^{n}v \Biggl( \sum_{i=1}^{n}\frac {c_{i} ( t ) }{n},\sum _{i=1}^{n}\frac{c_{i} ( t ) }{n} \Biggr), \\ =&nv \Biggl( \sum_{i=1}^{n} \frac{c_{i} ( t ) }{n},\sum_{i=1}^{n} \frac{c_{i} ( t ) }{n} \Biggr). \end{aligned}$$

Now, remark that

$$ \Biggl( \sum_{i=1}^{n}\frac{c_{i} ( t ) }{n},\sum_{i=1}^{n}\frac{c_{i} ( t ) }{n} \Biggr) = \sum_{i=1}^{n}\frac{1}{n} \biggl( c_{i} ( t ) ,\sum_{j\neq i}\frac{c_{j} ( t ) }{n-1} \biggr). $$

After substitution, this yields

$$ V \bigl( \overline{C} ( t ) \bigr) =nv \Biggl( \sum _{i=1}^{n}\frac{1}{n} \biggl( c_{i} ( t ) ,\sum_{j\neq i}\frac{c_{j} ( t ) }{n-1} \biggr) \Biggr). $$

Clearly, if \(C ( t ) \neq\overline{C} ( t ) \), by concavity of v,

$$ v \Biggl( \sum_{i=1}^{n}\frac{1}{n} \biggl( c_{i} ( t ) ,\sum_{j\neq i} \frac{c_{j} ( t ) }{n-1} \biggr) \Biggr) >\sum_{i=1}^{n} \frac{1}{n}v \biggl( c_{i} ( t ) ,\sum _{j\neq i}\frac{c_{j} ( t ) }{n-1} \biggr) \text{} $$

and

$$ V \bigl( \overline{C} ( t ) \bigr) >\sum_{i=1}^{n}v \biggl( c_{i} ( t ) ,\sum_{j\neq i} \frac{c_{j} ( t ) }{n-1} \biggr). $$

Now, recall that, for all i, v is decreasing in y i , and ϕ i (c i (t))≥∑ ji c j (t)/(n−1) (by Assumption 1(a)). It follows that

$$ v \biggl( c_{i} ( t ) ,\sum_{j\neq i} \frac{c_{j} ( t ) }{n-1} \biggr) \geq v \bigl( c_{i} ( t ) , \phi_{i} \bigl( c_{-i} ( t ) \bigr) \bigr) \text{} $$

for all i and, summing over i, that

$$ \sum_{i=1}^{n}v \biggl( c_{i} ( t ) ,\sum_{j\neq i}\frac{c_{j} ( t ) }{n-1} \biggr) \geq\sum _{i=1}^{n}v \bigl( c_{i} ( t ) , \phi_{i} \bigl( c_{-i} ( t ) \bigr) \bigr). $$

Finally, this allows us to show that

$$ V \bigl( \overline{C} ( t ) \bigr) >\sum_{i=1}^{n}v \bigl( c_{i} ( t ) ,\phi_{i} \bigl( c_{-i} ( t ) \bigr) \bigr) =V \bigl( C ( t ) \bigr), $$

which shows Lemma 1.

1.2 A.2 Proof of Proposition 1

The social problem is to choose c(⋅) to maximize

$$\begin{aligned} &\int_{0}^{\infty}nu \bigl( c ( t ) \bigr) e^{-\delta t}\,dt, \\ &\text{where:} \\ &\dot{x} ( t ) =-nc ( t ), \qquad x ( 0 ) =x_{0}, \\ &c ( t ) \geq0, \qquad x ( t ) \geq0. \end{aligned}$$

Define the current-value Hamiltonian

$$ H ( x,c,\lambda) =n \bigl( u ( c ) -\lambda c \bigr), $$

where λ is a costate multiplier associated with the state x.

A feasible control path c(⋅) with the corresponding state trajectory x(⋅) is optimal if there exists λ(⋅) such that

$$\begin{aligned} &n \bigl( u^{\prime} \bigl( c ( t ) \bigr) -\lambda( t ) \bigr) \leq 0\text{ and }n \bigl( u^{\prime} \bigl( c ( t ) \bigr) -\lambda( t ) \bigr) c ( t ) =0, \end{aligned}$$
(9)
$$\begin{aligned} &\dot{\lambda} ( t ) =\delta\lambda( t ), \end{aligned}$$
(10)
$$\begin{aligned} &\lim_{t\rightarrow\infty}e^{-\delta t}\lambda( t ) x ( t ) =0. \end{aligned}$$
(11)

Now, f(x) being such that

$$ \varTheta\bigl( f ( x ) \bigr) \equiv\int_{0}^{f ( x ) } \sigma( s )\,ds=\delta x/n\quad \text{for all }x, $$

let c(t), x(t), and λ(t) for all t satisfy

$$\begin{aligned} &c ( t ) =f \bigl( x ( t ) \bigr), \\ &\dot{x} ( t ) =-nc ( t ),\qquad x ( 0 ) =x_{0}, \\ &\dot{\lambda} ( t ) =\delta\lambda( t ),\qquad \lambda( 0 ) =u^{\prime} \bigl( f ( x_{0} ) \bigr). \end{aligned}$$

We show below that the proposed control path c(⋅) is feasible and satisfies conditions (9), (10), and (11). Proposition 1 follows.

(1) Feasibility. We first show, in Lemmas 1 and 2, that the proposed control path c(⋅) is feasible.

Lemma 1

For all x>0, f(x)>0, and f(0)=0.

Proof

If x=0, f(0)=0 follows from Θ(0)=0. Likewise, lim x→∞ f(x)=∞ follows from lim c→∞ Θ(c)=∞. If 0<x<∞, as Θ(0)=0<δx/n<∞=lim c→∞ Θ(c) and Θ(c) is continuous, there exists 0<f(x)<∞ such that Θ(f(x))=δx/n (by the intermediate value theorem). As Θ(c) is increasing (since Θ′(c)=σ(c)>0 for all c), this solution is unique. □

Lemma 2

The individual consumption path c(⋅) generates a trajectory of the resource stock x(⋅) such that x(t)≥0 for all t and lim t→∞ x(t)=0.

Proof

By definition, the individual consumption path c(⋅) generates a trajectory x(⋅) such that \(\dot{x} ( t ) =-nf ( x ( t ) ) \) for all t, with initial condition x(0)=x 0. Lemma 2 follows directly from the properties of f(⋅), which imply that \(\dot{x}( t ) =-nf ( x ( t ) ) <0\) when x(t)>0 and \(\dot{x} ( t ) =0\) when x(t)=0. □

(2) Necessary conditions. We now check that the necessary conditions (9), (10), and (11) are satisfied.

Let T represent the time of depletion of the resource stock (including the possibility that T=∞).

Lemma 3

Along the path x(⋅) induced by f(⋅), the marginal utility u′(f(x(t))) grows at the rate δ for all t<T and is equal to u′(0) for all tT.

Proof

First, remark that Θ(f(x))=δx/n for all x implies that σ(f(x))f′(x)=δ/n for all x (by differentiation).

Define p(t)=u′(f(x(t))) for all t.

For all t<T, differentiation yields

$$ \dot{p} ( t ) =u^{\prime\prime} \bigl( f \bigl( x ( t ) \bigr) \bigr) f^{\prime} \bigl( x ( t ) \bigr) \dot{x} ( t ). $$

Substituting \(\dot{x} ( t ) =-nf ( x ( t ) ) \) and dividing by p(t)=u′(f(x(t))), we get

$$ \frac{\dot{p} ( t ) }{p ( t ) }=n\sigma\bigl( f \bigl( x ( t ) \bigr) \bigr) f^{\prime} \bigl( x ( t ) \bigr) =\delta. $$

For all tT, x(t)=0 (by definition) and f(0)=0 imply that p(t)=u′(0). □

The maximum condition (9) follows directly from Lemma 3.

The adjoint equation (10) is satisfied by construction of λ(t).

The transversality condition (11) is satisfied since e δt λ(t)=u′(f(x 0)) by construction and lim t→∞ x(t)=0 by Lemma 2.

1.3 A.3 Proof of Property 1

For all n, let c satisfy Θ(c )=δx 0/n, and let C =nc . By differentiation we obtain

$$\begin{aligned} \frac{dc^{\circ}}{dn} =&-\frac{\delta x_{0}}{n^{2}\sigma( c{{}^\circ}) }, \\ \frac{dC{{}^\circ}}{dn} =&c{{}^\circ}-\frac{\delta x_{0}}{n\sigma( c{{}^\circ}) }. \end{aligned}$$

By the mean value theorem, given that Θ(0)=0, there exists c, with 0<c<c , such that

$$ \varTheta\bigl( c{{}^\circ}\bigr) =\sigma( c ) c{{}^\circ}. $$

Hence, we have

$$ c{{}^\circ}=\frac{\delta x_{0}}{n\sigma( c ) }. $$

By substitution it follows that

$$ \frac{dC{{}^\circ}}{dn}=\frac{\delta x_{0}}{n}\frac{\sigma( c{{}^\circ}) -\sigma( c ) }{\sigma( c ) \sigma( c {{}^\circ}) }\text{,} $$

which proves the property.

1.4 A.4 Proof of Proposition 2

Consider any player i. Assume that all individuals ji play the Markovian strategy \(s_{j}^{\ast}=g ( x ) \), where g(x) satisfies

$$ \varPsi\bigl( g ( x ) \bigr) \equiv\int_{0}^{g ( x ) } \bigl( \sigma( s ) - ( n-1+\alpha) /n \bigr) \,ds=\delta x/n\quad \text{for all }x. $$

Then, noting that y i (t)=ϕ i (g(x(t)),…,g(x(t)))=g(x(t)) for all t by Assumption 1(b), the problem of the remaining player i is to find a consumption path, c i (⋅), maximizing

$$\begin{aligned} &\int_{0}^{\infty}v \bigl( c_{i} ( t ) ,g \bigl( x ( t ) \bigr) \bigr) e^{-\delta t}dt, \\ &\text{where:} \\ &\dot{x} ( t ) =- \bigl( c_{i} ( t ) + ( n-1 ) g \bigl( x ( t ) \bigr) \bigr), \qquad x ( 0 ) =x_{0}, \\ &c_{i} ( t ) \geq0, \qquad x ( t ) \geq0. \end{aligned}$$

Define the current-value Hamiltonian

$$ H_{i} ( x,c_{i},\lambda_{i} ) =v \bigl( c_{i},g ( x ) \bigr) -\lambda_{i} \bigl( c_{i}+ ( n-1 ) g ( x ) \bigr), $$

where λ i is a costate multiplier associated with the state x.

A feasible control path c i (⋅) with the corresponding state trajectory x(⋅) is optimal if there exists λ i (⋅) such that

$$\begin{aligned} &v_{1} \bigl( c_{i} ( t ) ,g \bigl( x ( t ) \bigr) \bigr) - \lambda_{i} ( t ) \leq0\text{ and } \bigl( v_{1} \bigl( c_{i} ( t ) ,g \bigl( x ( t ) \bigr) \bigr) -\lambda_{i} ( t ) \bigr) c_{i} ( t ) =0, \end{aligned}$$
(12)
$$\begin{aligned} &\dot{\lambda}_{i} ( t ) = \bigl( \delta+ ( n-1 ) g^{\prime } \bigl( x ( t ) \bigr) \bigr) \lambda_{i} ( t ) -v_{2} \bigl( c_{i} ( t ) ,g \bigl( x ( t ) \bigr) \bigr) g^{\prime} \bigl( x ( t ) \bigr), \end{aligned}$$
(13)
$$\begin{aligned} &\lim_{t\rightarrow\infty}e^{-\delta t}\lambda_{i} ( t ) x ( t ) =0. \end{aligned}$$
(14)

Let c i (t) and x(t) for all t satisfy

$$\begin{aligned} &c_{i} ( t ) =g \bigl( x ( t ) \bigr), \\ &\dot{x} ( t ) =-ng \bigl( x ( t ) \bigr), \qquad x ( 0 ) =x_{0}. \end{aligned}$$

We show below that the proposed consumption path c i (⋅)=g(x(⋅)) is feasible, and we find λ i (⋅) to satisfy conditions (12), (13), and (14). Proposition 2 follows.

(1) Feasibility. It is immediate to adapt Lemmas 1 and 2 to show that the proposed control path c i (⋅) is feasible.

(2) Necessary conditions. Let T represent the time of depletion of the resource stock (including the possibility that T=∞). We first construct λ i (⋅) to simultaneously satisfy the maximum condition (12) and the adjoint condition (13). We then prove that the transversality condition (14) holds.

For all t<T, as x(t)>0, c i (t)=g(x(t))>0. Thus, the maximum condition (12) requires that

$$ \lambda_{i} ( t ) =v_{1} \bigl( c_{i} ( t ) ,g \bigl( x ( t ) \bigr) \bigr) =\frac{1}{1-\alpha}u^{\prime} \bigl( g \bigl( x ( t ) \bigr) \bigr). $$

To show that the adjoint condition (13) holds, differentiate this expression to get

$$ \dot{\lambda}_{i} ( t ) =\frac{1}{1-\alpha}u^{\prime\prime } \bigl( g \bigl( x ( t ) \bigr) \bigr) g^{\prime} \bigl( x ( t ) \bigr) \dot{x} ( t ). $$

Substitute \(\dot{x} ( t ) =-ng ( x ( t ) ) \) and use λ i (t)=u′(g(x(t)))/(1−α) to obtain

$$ \dot{\lambda}_{i} ( t ) =n\sigma\bigl( g \bigl( x ( t ) \bigr) \bigr) g^{\prime} \bigl( x ( t ) \bigr) \lambda_{i} ( t ). $$

Now, by differentiation, Ψ(g(x))=δx/n for all x implies that

$$ n\sigma\bigl( g ( x ) \bigr) g^{\prime} ( x ) =\delta+ ( n-1+\alpha) g^{\prime} ( x ) \quad \text{for all }x. $$

Thus, after substitution, we can write

$$ \dot{\lambda}_{i} ( t ) = \bigl( \delta+ ( n-1+\alpha) g^{\prime} \bigl( x ( t ) \bigr) \bigr) \lambda_{i} ( t ). $$

Finally, using λ i (t)=v 1(c i (t),g(x(t))) and v 2(c i (t),g(x(t)))=−αv 1(c i (t),g(x(t))) (as c i (t)=g(x(t))), we derive

$$ \dot{\lambda}_{i} ( t ) = \bigl( \delta+ ( n-1 ) g^{\prime } \bigl( x ( t ) \bigr) \bigr) \lambda_{i} ( t ) -v_{2} \bigl( c_{i} ( t ) ,g \bigl( x ( t ) \bigr) \bigr) g^{\prime} \bigl( x ( t ) \bigr), $$

which is the adjoint equation (13).

For tT, as x(t)=0, c i (t)=g(0)=0. Thus, the maximum condition (12) requires that

$$ v_{1} ( 0,0 ) =\frac{1}{1-\alpha}u^{\prime} ( 0 ) \leq \lambda_{i} ( t ). $$

Assume that λ i (t) satisfies the adjoint equation (13) with λ i (T)=v 1(0,0). Then, we can show that

$$ \lambda_{i} ( t ) = \biggl( \lambda_{i} ( T ) - \frac{v_{2} ( 0,0 ) g^{\prime} ( 0 ) }{\delta+ ( n-1 ) g^{\prime} ( 0 ) } \biggr) e^{ ( \delta+ ( n-1 ) g^{\prime} ( 0 ) ) ( t-T ) }+\frac{ v_{2} ( 0,0 ) g^{\prime} ( 0 ) }{\delta+ ( n-1 ) g^{\prime} ( 0 ) }. $$

Substituting v 2(0,0)=−αv 1(0,0)=−αλ i (T) and rearranging, we can write

$$ \lambda_{i} ( t ) =\frac{ ( \delta+ ( n-1+\alpha ) g^{\prime} ( 0 ) ) e^{ ( \delta+ ( n-1 ) g^{\prime} ( 0 ) ) ( t-T ) }-\alpha g^{\prime } ( 0 ) }{\delta+ ( n-1 ) g^{\prime} ( 0 ) }\lambda_{i} ( T ). $$

As e (δ+(n−1)g′(0))(tT)≥1, this implies that λ i (t)≥λ i (T)=v 1(0,0), which proves that the maximum condition (12) is true.

To verify the transversality condition (14), we need to separate the cases where T is finite or infinite. If T is finite, the condition is trivially verified since x(t)=0 for all tT. If T is infinite, define A(t)=e δt λ i (t)x(t). By differentiation we obtain

$$ \frac{\dot{A} ( t ) }{A ( t ) }=-\delta+\frac{\dot {\lambda }_{i} ( t ) }{\lambda_{i} ( t ) }+\frac{\dot{x} ( t ) }{x ( t ) }. $$

Using

$$\begin{aligned} \frac{\dot{\lambda}_{i} ( t ) }{\lambda_{i} ( t ) } =&\delta+ ( n-1+\alpha) g^{\prime} \bigl( x ( t ) \bigr), \\ \dot{x} ( t ) =&-ng \bigl( x ( t ) \bigr), \end{aligned}$$

we get

$$ \frac{\dot{A} ( t ) }{A ( t ) }= ( n-1+\alpha) g^{\prime} \bigl( x ( t ) \bigr) -n \frac{g ( x ( t ) ) }{x ( t ) }. $$

Now, by definition, for all x, g(x) satisfies Ψ(g(x))=δx/n, which is equivalent to

$$ \int_{0}^{g ( x ) } \bigl( n \bigl( \sigma( s ) -1 \bigr) +1-\alpha\bigr) \,ds=\delta x. $$

A first implication is that (by differentiation with respect to x)

$$ \bigl( n \bigl( \sigma\bigl( g ( x ) \bigr) -1 \bigr) +1-\alpha\bigr) g^{\prime} ( x ) =\delta. $$

A second implication is that there exists c, with 0<c<g(x), such that (by the mean value theorem)

$$ \bigl( n \bigl( \sigma( c ) -1 \bigr) +1-\alpha\bigr) g ( x ) =\delta x. $$

This piece of information implies that, for all t, there exists c, with 0<c<g(x(t)), such that

$$ \frac{\dot{A} ( t ) }{A ( t ) }= ( n-1+\alpha) \frac{\delta}{n ( \sigma( g ( x ( t ) ) ) -1 ) +1-\alpha}-n\frac{\delta}{n ( \sigma( c ) -1 ) +1-\alpha}. $$

Now, as t tends to infinity, the resource stock x(t) converges to 0, implying that both g(x(t)) and c (as 0<c<g(x(t))) converge to 0. From this we can write

$$ \lim_{t\rightarrow\infty}\frac{\dot{A} ( t ) }{A ( t ) }=- \frac{1-\alpha}{n ( \sigma( 0 ) -1 ) +1-\alpha}\delta<0, $$

which implies that the transversality condition (14) holds.

1.5 A.5 Proof of Property 2

For all n, let c satisfy Θ(c )−(n−1+α)c /n=δx 0/n, and let C =nc . By differentiation we show

$$\begin{aligned} \frac{dc^{\ast}}{dn} =&-\frac{\varTheta( c^{\ast} ) -c^{\ast }}{n\sigma( c^{\ast} ) -n+1-\alpha}, \\ \frac{dC^{\ast}}{dn} =&c^{\ast}-\frac{n ( \varTheta( c^{\ast } ) -c^{\ast} ) }{n\sigma( c^{\ast} ) -n+1-\alpha}. \end{aligned}$$

Let us show the first assertion. By the mean value theorem, given that Θ(0)=0, there exists c, with 0<c<c , such that

$$ \varTheta\bigl( c^{\ast} \bigr) =\sigma( c ) c^{\ast}. $$

Assume that σ(c)>1 for all c. Then, Θ(c )>c , implying that dc /dn<0. Likewise, one can prove that dc /dn=0 if σ(c)=1 for all c and dc /dn>0 if σ(c)<1 for all c.

As dC /dn=c +dc /dn, the second assertion directly follows from the first one.

Let us now prove the third assertion. Since

$$ n\varTheta\bigl( c^{\ast} \bigr) -nc^{\ast}=\delta x_{0}- ( 1-\alpha) c^{\ast}, $$

we can write, after substitution,

$$ \frac{dC^{\ast}}{dn}=c^{\ast}-\frac{\delta x_{0}}{n\sigma( c^{\ast } ) -n+1-\alpha}+\frac{ ( 1-\alpha) c^{\ast}}{n\sigma ( c^{\ast} ) -n+1-\alpha}. $$

Using anew Θ(c )=σ(c)c , we can show that

$$ c^{\ast}=\frac{\delta x_{0}}{n\sigma( c ) -n+1-\alpha}, $$

and, after substitution,

$$ \frac{dC^{\ast}}{dn}=\frac{n ( \sigma( c^{\ast} ) -\sigma ( c ) ) }{ ( n\sigma( c ) -n+1-\alpha ) ( n\sigma( c^{\ast} ) -n+1-\alpha) }\delta x_{0}+\frac{ ( 1-\alpha) c^{\ast}}{n\sigma( c^{\ast} ) -n+1-\alpha}. $$

It follows that dC /dn>0 whenever σ(c )≥σ(c), which proves the property.

1.6 A.6 Proof of Proposition 3

Consider any player i. Assume that all individuals ji play the Markovian strategy \(s_{j}^{\ast}=f ( x ) \), where f(x) satisfies Θ(f(x))=δx/n. Then, noting that y i (t)=ϕ i (f(x(t)),…,f(x(t)))=f(x(t)), z i (t)=φ i (f(x(t)),…,f(x(t)))=f(x(t)) and τ(z i (t))≡(n−1+α)u′(f(x(t)))/((1−α)n) for all t, the problem of the remaining player i is to find a consumption path, c i (⋅), maximizing

$$\begin{aligned} &\int_{0}^{\infty} \left [ \begin{array}{c} v ( c_{i} ( t ) ,f ( x ( t ) ) ) \\ -\tau( f ( x ) ) ( c_{i} ( t ) -f ( x ( t ) ) )\end{array} \right ] e^{-\delta t}\,dt, \\ &{}\text{where:} \\ &{}\dot{x} ( t ) =- \bigl( c_{i} ( t ) + ( n-1 ) f \bigl( x ( t ) \bigr) \bigr), \qquad x ( 0 ) =x_{0}, \\ &{}c_{i} ( t ) \geq0, \qquad x ( t ) \geq0. \end{aligned}$$

Define the current-value Hamiltonian

$$ H_{i} ( x,c_{i},\lambda_{i} ) =v \bigl( c_{i},f ( x ) \bigr) -\tau\bigl( f ( x ) \bigr) \bigl( c_{i}-f ( x ) \bigr) -\lambda_{i} \bigl( c_{i}+ ( n-1 ) f ( x ) \bigr), $$

where λ i is a costate multiplier associated with the state x.

A feasible control path c i (⋅), with corresponding state trajectory x(⋅), is optimal if there exists λ i (⋅) such that

$$\begin{aligned} &v_{1} \bigl( c_{i} ( t ) ,f \bigl( x ( t ) \bigr) \bigr) - \tau\bigl( f \bigl( x ( t ) \bigr) \bigr) -\lambda_{i} ( t ) \leq0 \notag \\ &\quad \text{and}\quad \bigl( v_{1} \bigl( c_{i} ( t ) ,f \bigl( x ( t ) \bigr) \bigr) -\tau\bigl( f \bigl( x ( t ) \bigr) \bigr) - \lambda_{i} ( t ) \bigr) c_{i} ( t ) =0, \end{aligned}$$
(15)
$$\begin{aligned} &\dot{\lambda}_{i} ( t ) = \bigl( \delta+ ( n-1 ) f^{\prime } \bigl( x ( t ) \bigr) \bigr) \lambda_{i} ( t ) -v_{2} \bigl( c_{i} ( t ) ,f \bigl( x ( t ) \bigr) \bigr) f^{\prime} \bigl( x ( t ) \bigr) \notag \\ &\quad \qquad{} + \bigl( \tau^{\prime} \bigl( f \bigl( x ( t ) \bigr) \bigr) \bigl( c_{i} ( t ) -f \bigl( x ( t ) \bigr) \bigr) -\tau\bigl( f \bigl( x ( t ) \bigr) \bigr) \bigr) f^{\prime} \bigl( x ( t ) \bigr), \end{aligned}$$
(16)
$$\begin{aligned} &\lim_{t\rightarrow\infty}e^{-\delta t}\lambda_{i} ( t ) x ( t ) =0. \end{aligned}$$
(17)

Now, f(x) being such that Θ(f(x))=δx/n for all x, let c i (t) and x(t) for all t satisfy

$$\begin{aligned} &c_{i} ( t ) =f \bigl( x ( t ) \bigr), \\ &\dot{x} ( t ) =-nf \bigl( x ( t ) \bigr), \qquad x ( 0 ) =x_{0}. \end{aligned}$$

We show below that the proposed consumption path c i (⋅)=f(x(⋅)) is feasible, and we find λ i (⋅) to satisfy conditions (15), (16), and (17). Proposition 3 follows.

(1) Feasibility The proposed path, being identical to the socially optimal consumption path, is clearly feasible (see Lemmas 1 and 2).

(2) Necessary conditions Let T represent the time of depletion of the resource stock (including the possibility that T=∞). We first construct λ i (⋅) to simultaneously satisfy the maximum condition (15) and the adjoint condition (16). We then prove that the transversality condition (17) holds.

For all t<T, as x(t)>0 (by definition), c i (t)=f(x(t))>0. Thus, the maximum condition (12) requires that (using v 1(c i (t),f(x(t)))=u′(f(x(t)))/(1−α) and τ(f(x(t)))=(n−1+α)u′(f(x(t)))/((1−α)n))

$$ \lambda_{i} ( t ) =v_{1} \bigl( c_{i} ( t ) ,f \bigl( x ( t ) \bigr) \bigr) -\tau\bigl( f \bigl( x ( t ) \bigr) \bigr ) = \frac{1}{n}u^{\prime} \bigl( f \bigl( x ( t ) \bigr) \bigr). $$

To show that the adjoint condition (16) holds, differentiate this expression to get

$$ \dot{\lambda}_{i} ( t ) =\frac{1}{n}u^{\prime\prime} \bigl( f \bigl( x ( t ) \bigr) \bigr) f^{\prime} \bigl( x ( t ) \bigr) \dot{x} ( t ). $$

Substitute \(\dot{x} ( t ) =-nf ( x ( t ) ) \) and use λ i (t)=u′(f(x(t)))/n to obtain

$$ \dot{\lambda}_{i} ( t ) =n\sigma\bigl( f \bigl( x ( t ) \bigr) \bigr) f^{\prime} \bigl( x ( t ) \bigr) \lambda_{i} ( t ). $$

Now, by differentiation, Θ(f(x))=δx/n for all x implies that

$$ n\sigma\bigl( f ( x ) \bigr) f^{\prime} ( x ) =\delta\quad \text{for all }x. $$

Thus, after substitution, we can write

$$ \dot{\lambda}_{i} ( t ) =\delta\lambda_{i} ( t ). $$

Finally, we can verify that this precisely coincides with the adjoint equation (16). Indeed, using c i (t)=f(x(t)), v 1(c i (t),f(x(t)))=u′(f(x(t)))/(1−α), v 2(c i (t),f(x(t)))=−αu′(f(x(t)))/(1−α), and λ i (t)=u′(f(x(t)))/n, we can show that

$$\begin{aligned}[c] &( n-1 ) f^{\prime} \bigl( x ( t ) \bigr) \lambda_{i} ( t ) -v_{2} \bigl( c_{i} ( t ) ,f \bigl( x ( t ) \bigr) \bigr) f^{\prime} \bigl( x ( t ) \bigr) \\ &\quad {}+ \bigl( \tau^{\prime} \bigl( f \bigl( x ( t ) \bigr) \bigr) \bigl( c_{i} ( t ) -f \bigl( x ( t ) \bigr) \bigr) -\tau\bigl( x ( t ) \bigr) \bigr) f^{\prime} \bigl( x ( t ) \bigr) =0. \end{aligned} $$

For tT, as x(t)=0, c i (t)=f(0)=0. Thus, the maximum condition (15) requires that

$$ v_{1} ( 0,0 ) -\tau( 0 ) =\frac{1}{n}u^{\prime } ( 0 ) \leq\lambda_{i} ( t ). $$

Assume that λ i (t) satisfies the adjoint equation (16) with λ i (T)=v 1(0,0)−τ(0). Then, we can show that

$$ \lambda_{i} ( t ) = \biggl( \lambda_{i} ( T ) - \frac{( v_{2} ( 0,0 ) +\tau( 0 ) ) f^{\prime } ( 0 ) }{\delta+ ( n-1 ) f^{\prime} ( 0 ) }\biggr) e^{ ( \delta+ ( n-1 ) f^{\prime} ( 0 ) ) ( t-T ) }+\frac{ ( v_{2} ( 0,0 ) +\tau ( 0 ) ) f^{\prime} ( 0 ) }{\delta+ ( n-1 ) f^{\prime} ( 0 ) }. $$

Substituting v 2(0,0)+τ(0)=(n−1)λ i (T) and rearranging, we can write

$$ \lambda_{i} ( t ) =\frac{\delta e^{ ( \delta+ ( n-1 ) f^{\prime} ( 0 ) ) ( t-T ) }+ ( n-1 ) f^{\prime} ( 0 ) }{\delta+ ( n-1 ) f^{\prime } ( 0 ) }\lambda_{i} ( T ). $$

As e (δ+(n−1)f′(0))(tT)≥1, this implies that λ i (t)≥λ i (T)=v 1(0,0)−τ(0), which proves that the maximum condition (15) is true.

The transversality condition (17) is immediate since if T is finite, x(t)=0 for all tT, and if T is infinite, then \(e^{-\delta t}\lambda_{i} ( t ) =\frac{1}{n}u^{\prime } ( f ( x_{0} ) ) \) for all t, and lim t→∞ x(t)=0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouillon, S. Do Social Status Seeking Behaviors Worsen the Tragedy of the Commons?. Dyn Games Appl 4, 73–94 (2014). https://doi.org/10.1007/s13235-013-0087-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-013-0087-6

Keywords

Navigation