Skip to main content
Log in

Synthesis, CO2 Adsorption and Catalytic Properties of Porphyrin-Pyromellitic Dianhydride Based Porous Polymers

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The synthesis, characterization and CO2 uptake tendency of a new porous organic polymer (POP) based on porphyrin-pyromellitic dianhyderide is enclosed. The reported porphyrin POP was achieved by exploiting the condensation reaction between tetraaminophenylporphyrin (TAPP) with benzenetetracarboxylic (pyromellitic) diahhydride in dry dimethylforamide (DMF). The structure of the resulting polymer was confirmed by FT-IR as well as solid state 13C cross-polarization magic angle spinning (CP/MAS) NMR studies. In addition, the post-synthetic metallation of the free-base porphyrin macrocycles of the resulting POP with either Zn or Mn metals afforded the metallo-porphyrin POP analogues in excellent yields. The morphology of the reported porphyrin POPs were investigated by scanning electron microscopy (SEM) which demonstrated the porosity of the resulting POPs. Furthermore, CO2 adsorption capabilities of the synthesized POPs were evaluated and Brunauer-Emmett-Teller (BET) surface area was found to be 542, 597 and 828 m2/g for free-base, Zn- and MnIII-POP, respectively. Finally, MnIII-POP was found to be an effective catalyst for the selective epoxidation of styrene to the corresponding epoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Zhang, G. Xing, W. Chen, and L. Chen, Mater. Chem. Front., 4, 332 (2020).

    Article  CAS  Google Scholar 

  2. Z. Wang, S. Zhang, Y. Chen, Z. Zhang, and S. Ma, Chem. Soc. Rev., 49, 708 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. S.-W. Lv, J.-M. Liu, Z.-H. Wang, H. Ma, C.-Y. Li, N. Zhao, and S. Wang, J. Environ. Sci., 80, 169 (2019).

    Article  Google Scholar 

  4. H. Gao, Q. Li, and S. Ren, Curr. Opin. Green Sustain. Chem., 16, 33 (2019).

    Article  Google Scholar 

  5. P. Bhanja, A. Modak, and A. Bhaumik, ChemCatChem, 11, 244 (2019).

    Article  CAS  Google Scholar 

  6. H. Bildirir, V. G. Gregoriou, A. Avgeropoulos, U. Scherf, and C. L. Chochos, Materials Horizons, 4, 546 (2017).

    Article  CAS  Google Scholar 

  7. S. Das, P. Heasman, T. Ben, and S. Qiu, Chem. Rev., 117, 1515 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. R. Bera, M. Ansari, A. Alam, and N. Das, ACS Appl. Polym. Mater., 1, 959 (2019).

    Article  CAS  Google Scholar 

  9. S. Xiong, X. Tang, C. Pan, L. Li, J. Tang, and G. Yu, ACS Appl. Mater. Interfaces, 11, 27335 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. R. Peng, G. Chen, F. Zhou, R. Man, and J. Huang, Chem. Eng. J., 371, 260 (2019).

    Article  CAS  Google Scholar 

  11. D. Chen, C. Liu, J. Tang, L. Luo, and G. Yu, Polym. Chem., 10, 1168 (2019).

    Article  CAS  Google Scholar 

  12. L. Shao, M. Liu, Y. Sang, and J. Huang, Microporous Mesoporous Mat., 285, 105 (2019).

    Article  CAS  Google Scholar 

  13. D. Chakraborty, S. Nandi, M. A. Sinnwell, J. Liu, R. Kushwaha, P. K. Thallapally, and R. Vaidhyanathan, ACS Appl. Mater. Interfaces, 11, 13279 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Z.-W. Liu, C.-X. Cao, and B.-H. Han, J. Hazard. Mater., 367, 348 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. A. Comotti, F. Castiglioni, S. Bracco, J. Perego, A. Pedrini, M. Negroni, and P. Sozzani, Chem. Commun., 55, 8999 (2019).

    Article  CAS  Google Scholar 

  16. X. Liu, C. Xu, X. Yang, Y. He, Z. Guo, and D. Yan, Microporous Mesoporous Mat., 275, 95 (2019).

    Article  CAS  Google Scholar 

  17. S. L. James, Chem. Soc. Rev., 32, 276 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. S. Li and F. Huo, Nanoscale, 7, 7482 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, Science, 341, 1230444 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. W. Xuan, C. Zhu, Y. Liu, and Y. Cui, Chem. Soc. Rev., 41, 1677 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. R. Shen, W. Zhu, X. Yan, T. Li, Y. Liu, Y. Li, S. Dai, and Z.-G. Gu, Chem. Commun., 55, 822 (2019).

    Article  CAS  Google Scholar 

  22. Z. Li, Y. Zhi, P. Shao, H. Xia, G. Li, X. Feng, X. Chen, Z. Shi, and X. Liu, Appl. Catal. B: Environ., 245, 334 (2019).

    Article  CAS  Google Scholar 

  23. W. Gao, J. Tian, Y. Fang, T. Liu, X. Zhang, X. Xu, and X. Zhang, Chemosphere, 243, 125334 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. D. K. Li, Y. S. Fang, and X. M. Zhang, ACS Appl. Mater. Interfaces, 12, 8989 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. M. T. Li, H. Y. Zhao, and Z. Y. Lu, Microporous Mesoporous Mat., 292, 109774 (2020).

    Article  CAS  Google Scholar 

  26. Y. Li, Y. Fang, W. Gao, X. Guo, and X. Zhang, ACS Sustain. Chem. Eng., 8, 10870 (2020).

    CAS  Google Scholar 

  27. T. Liu, L. Jing, L. Cui, Q. Liu, and X. Zhang, Chemosphere, 212, 1038 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. G. Mukherjee, J. Thote, H. B. Aiyappa, S. Kandambeth, S. Banerjee, K. Vanka, and R. Banerjee, Chem. Commun., 53, 4461 (2017).

    Article  CAS  Google Scholar 

  29. W. Zhu, Z.-D. Ding, X. Wang, T. Li, R. Shen, Y. Li, Z. Li, X. Ren, and Z.-G. Gu, Polym. Chem., 8, 4327 (2017).

    Article  CAS  Google Scholar 

  30. X. Jiang, Y. Liu, J. Liu, Y. Luo, and Y. Lyu, RSC Adv., 5, 98508 (2015).

    Article  CAS  Google Scholar 

  31. W. Hao, D. Chen, Y. Li, Z. Yang, G. Xing, J. Li, and L. Chen, Chem. Mater., 31, 8100 (2019).

    Article  CAS  Google Scholar 

  32. J. Guo, L. Wang, and J. Huang, Ind. Eng. Chem. Res., 59, 3205 (2020).

    Article  CAS  Google Scholar 

  33. J. F. Guo, L. Wang, D. Zhang, and J. Huang, Energy Fuels, 34, 9771 (2020).

    Article  CAS  Google Scholar 

  34. K. Shi, N. Song, Y. Zou, S. Zhu, H. Tan, Y. Tian, B. Zhang, H. Yao, and S. Guan, Polymer, 169, 160 (2019).

    Article  CAS  Google Scholar 

  35. K. C. Park, J. Cho, and C. Y. Lee, RSC Adv., 6, 75478 (2016).

    Article  CAS  Google Scholar 

  36. J. Tian and W. Zhang, Prog. Polym. Sci., 95, 65 (2019).

    Article  CAS  Google Scholar 

  37. H. Wang, H. Ding, X. Meng, and C. Wang, Chinese Chem. Lett., 27, 1376 (2016).

    Article  CAS  Google Scholar 

  38. A. Rehman and S.-J. Park, Macromol. Res., 25, 1035 (2017).

    Article  CAS  Google Scholar 

  39. Y. Lu, Z. Chang, S. Zhang, S. Wang, Q. Chen, L. Feng, and Z. Sui, J. Mater. Sci., 55, 11856 (2020).

    Article  CAS  Google Scholar 

  40. W. Wang, C. Li, J. Jin, L. Yan, and Y. Ding, Dalton Trans., 47, 13135 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. G. Lu, Y. Zhu, K. Xu, Y. Jin, Z. J. Ren, Z. Liu, and W. Zhang, Nanoscale, 7, 18271 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. A. R. Oveisi, K. Zhang, A. Khorramabadi-zad, O. K. Farha, and J. T. Hupp, Sci. Rep., 5, 10621 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. K. Zhang, O. K. Farha, J. T. Hupp, and S. T. Nguyen, ACS Catal., 5, 4859 (2015).

    Article  CAS  Google Scholar 

  44. S. K. Selahle, N. J. Waleng, A. Mpupa, and P. N. Nomngongo, Front. Chem., 8, 555847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. J.-K. Tang, C.-Y. Zhu, T.-W. Jiang, L. Wei, H. Wang, K. Yu, C.-L. Yang, Y.-B. Zhang, C. Chen, Z.-T. Li, D.-W. Zhang, and L.-M. Zhang, J. Mater. Chem. A, 8, 18677 (2020).

    Article  CAS  Google Scholar 

  46. J. Wang, C. Jiao, M. Li, X. Wang, C. Wang, Q. Wu, and Z. Wang, Microchim. Acta, 185, 36 (2018).

    Article  CAS  Google Scholar 

  47. L. Pan, Z. Chen, W. Deng, G. Yan, and X. Liu, Macromol. Res., 24, 366 (2016).

    Article  CAS  Google Scholar 

  48. J. Zhu, Z. Tan, and W. Yang, Macromol. Res., 25, 792 (2017).

    Article  CAS  Google Scholar 

  49. A. M. Shultz, O. K. Farha, J. T. Hupp and S. T. Nguyen, Chem. Sci., 2, 686 (2011).

    Article  CAS  Google Scholar 

  50. A. Bettelheim, B. A. White, S. A. Raybuck, and R. W. Murray, Inorg. Chem., 26, 1009 (1987).

    Article  CAS  Google Scholar 

  51. J. Jin, New J. Chem., 44, 15362 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support by the Deanship of Scientific Research (Takamul Program-Project No. 102) Islamic University, Saudi Arabia is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Fathalla.

Additional information

Supporting information

Information is available regarding the general experimental procedures and analytical techniques for the preparation and characterization of the reported porphyrin porous polymers, additional SEM images and 1H NMR spectrum. The materials are available via the Internet at http://www.springer.com/13233.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathalla, M. Synthesis, CO2 Adsorption and Catalytic Properties of Porphyrin-Pyromellitic Dianhydride Based Porous Polymers. Macromol. Res. 29, 321–326 (2021). https://doi.org/10.1007/s13233-021-9037-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9037-0

Keywords

Navigation