Skip to main content
Log in

Advanced Polymer-Based Bioink Technology for Printing Soft Biomaterials

  • Review
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Remarkable advancement in 3D printing technology in recent years has already transformed many aspects of industrial manufacturing. The immense potential of 3D printing is already being explored in state-of-the-art biomedical research field. Often termed “bioprinting”, 3D printing is utilized to generate biological structures with high resolution and specificity for tissue engineering and regenerative medical applications. With the maturation of bioprinting apparatus, now the focus is shifting to engineering “bioinks” that can accommodate the versatility of biological systems, while still maintaining their printability. In this review, bioink technologies based on various polymers to produce soft biomaterials, such as hydrogels and elastomers, having a diverse array of physicochemical and bioactive properties are introduced and highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, Compos. B: Eng., 143, 172 (2018).

    CAS  Google Scholar 

  2. Y. W. D. Tay, B. Panda, S. C. Paul, N. A. Noor Mohamed, M. J. Tan, and K. F. Leong, Virtual Phys. Prototyp., 12, 261 (2017).

    Google Scholar 

  3. J. C. Najmon, S. Raeisi, and A. Tovar, in Additive Manufacturing for the Aerospace Industry, F. Froes and R. Boyer, Eds., Elsevier, 2019, pp 7–31.

  4. J. Sun, Z. Peng, W. Zhou, J. Y. H. Fuh, G. S. Hong, and A. Chiu, Procedia Manuf., 1, 308 (2015).

    Google Scholar 

  5. A. B. Dababneh and I. T. Ozbolat, J. Manuf. Sci. E. T. ASME., 136, 061016 (2014).

    Google Scholar 

  6. S. V. Murphy and A. Atala, Nat. Biotechnol., 32, 773 (2014).

    CAS  PubMed  Google Scholar 

  7. C. Mandrycky, Z. Wang, K. Kim, and D.-H. Kim, Biotechnol. Adv., 34, 422 (2016).

    CAS  PubMed  Google Scholar 

  8. S. Derakhshanfar, R. Mbeleck, K. Xu, X. Zhang, W. Zhong, and M. Xing, Bioact. Mater., 3, 144 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Y. He, Y. Wu, J.-Z. Fu, Q. Gao, and J.-J. Qiu, Electroanalysis, 28, 1658 (2016).

    CAS  Google Scholar 

  10. J. Long, H. Gholizadeh, J. Lu, C. Bunt, and A. Seyfoddin, Curr. Pharm. Des., 23, 433 (2017).

    CAS  PubMed  Google Scholar 

  11. A. Naveau, R. Smirani, S. Catros, H. De Oliveira, J.-C. Fricain, and R. Devillard, Appl. Sci., 7, 1331 (2017).

    Google Scholar 

  12. P. S. Gungor-Ozkerim, I. Inci, Y. S. Zhang, A. Khademhosseini, and M. R. Dokmeci, Biomater. Sci., 6, 915 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. I. Donderwinkel, J. C. M. van Hest, and N. R. Cameron, Polym. Chem., 8, 4451 (2017).

    CAS  Google Scholar 

  14. J. Gopinathan and I. Noh, Biomater. Res., 22, 11 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. M. Hospodiuk, M. Dey, D. Sosnoski, and I. T. Ozbolat, Biotechnol. Adv., 35, 217 (2017).

    CAS  PubMed  Google Scholar 

  16. Y. Wen, S. Xun, M. Haoye, S. Baichuan, C. Peng, L. Xuejian, Z. Kaihong, Y. Xuan, P. Jiang, and L. Shibi, Biomater. Sci., 5, 1690 (2017).

    CAS  PubMed  Google Scholar 

  17. S. Bose, S. Vahabzadeh, and A. Bandyopadhyay, Mater. Today, 16, 496 (2013).

    CAS  Google Scholar 

  18. A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, and R. Müller, Acta Biomater., 7, 907 (2011).

    CAS  PubMed  Google Scholar 

  19. A.-V. Do, B. Khorsand, S. M. Geary, and A. K. Salem, Adv. Healthc. Mater., 4, 1742 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. S. L. Sing, J. An, W. Y. Yeong, and F. E. Wiria, J. Orth. Res., 34, 369 (2016).

    CAS  Google Scholar 

  21. V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald, Biomaterials, 30, 2164 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. H. Gudapati, M. Dey, and I. Ozbolat, Biomaterials, 102, 20 (2016).

    CAS  PubMed  Google Scholar 

  23. J.-A. Yang, J. Yeom, B. W. Hwang, A. S. Hoffman, and S. K. Hahn, Prog. Polym. Sci., 39, 1973 (2014).

    CAS  Google Scholar 

  24. S. H. Kim, Y. K. Yeon, J. M. Lee, J. R. Chao, Y. J. Lee, Y. B. Seo, M. T. Sultan, O. J. Lee, J. S. Lee, S.-i. Yoon, I.-S. Hong, G. Khang, S. J. Lee, J. J. Yoo, and C. H. Park, Nat. Commun., 9, 1620 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. F. P. W. Melchels, J. Feijen, and D. W. Grijpma, Biomaterials, 31, 6121 (2010).

    CAS  PubMed  Google Scholar 

  26. S. A. Skoog, P. L. Goering, and R. J. Narayan, J. Mater. Sci. Mater. Med., 25, 845 (2014).

    CAS  PubMed  Google Scholar 

  27. X.-H. Qin, A. Ovsianikov, J. Stampfl, and R. Liska, BioNanoMaterials, 15, 49 (2014).

    Google Scholar 

  28. Y.-B. Lee, S. Polio, W. Lee, G. Dai, L. Menon, R. S. Carroll, and S.-S. Yoo, Exp. Neurol., 223, 645 (2010).

    CAS  PubMed  Google Scholar 

  29. X. Yang, Z. Lu, H. Wu, W. Li, L. Zheng, and J. Zhao, Mater. Sci. Eng., C, 83, 195 (2018).

    Google Scholar 

  30. L. Ouyang, C. B. Highley, C. B. Rodell, W. Sun, and J. A. Burdick, ACS Biomater. Sci. Eng., 2, 1743 (2016).

    CAS  Google Scholar 

  31. E. Axpe and M. L. Oyen, Int. J. Mol. Sci., 17, 1976 (2016).

    PubMed Central  Google Scholar 

  32. T. Xu, C. A. Gregory, P. Molnar, X. Cui, S. Jalota, S. B. Bhaduri, and T. Boland, Biomaterials, 27, 3580 (2006).

    CAS  PubMed  Google Scholar 

  33. T. Xu, W. Zhao, J.-M. Zhu, M. Z. Albanna, J. J. Yoo, and A. Atala, Biomaterials, 34, 130 (2013).

    PubMed  Google Scholar 

  34. Z. Sun, S. S. Guo, and R. Fässler, J. Cell Biol., 215, 445 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. A. W. Orr, B. P. Helmke, B. R. Blackman, and M. A. Schwartz, Dev. Cell, 10, 11 (2006).

    CAS  PubMed  Google Scholar 

  36. A. Vedadghavami, F. Minooei, M. H. Mohammadi, S. Khetani, A. Rezaei Kolahchi, S. Mashayekhan, and A. Sanati-Nezhad, Acta Biomater., 62, 42 (2017).

    CAS  PubMed  Google Scholar 

  37. A. Parak, P. Pradeep, L. C. du Toit, P. Kumar, Y. E. Choonara, and V. Pillay, Drug Discov. Today, 24, 198 (2019).

    CAS  PubMed  Google Scholar 

  38. G. Zhang, FASEB J., 30, 13.1 (2016).

    Google Scholar 

  39. P. Zarrintaj, S. Manouchehri, Z. Ahmadi, M. R. Saeb, A. M. Urbanska, D. L. Kaplan, and M. Mozafari, Carbohydr. Polym., 187, 66 (2018).

    CAS  PubMed  Google Scholar 

  40. F. Kreimendahl, M. Köpf, A. L. Thiebes, D. F. D. Campos, A. Blaeser, T. Schmitz-Rode, C. Apel, S. Jockenhoevel, and H. Fischer, Tissue Eng. Part C Methods, 23, 604 (2017).

    CAS  PubMed  Google Scholar 

  41. A. Forget, A. Blaeser, F. Miessmer, M. Köpf, D. F. D. Campos, N. H. Voelcker, A. Blencowe, H. Fischer, and V. P. Shastri, Adv. Healthc. Mater., 6, 1700255 (2017).

    Google Scholar 

  42. C. Khatiwala, K. Murphy, and B. Shepherd, US Patent US 2013/0345794 A1 (2013).

    Google Scholar 

  43. C. Norotte, F. S. Marga, L. E. Niklason, and G. Forgacs, Biomaterials, 30, 5910 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, Lab Chip, 14, 2202 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. B. Duan, L. A. Hockaday, K. H. Kang, and J. T. Butcher, J. Biomed. Mater. Res. A, 101A, 1255 (2013).

    CAS  Google Scholar 

  46. S. Wüst, M. E. Godla, R. Müller, and S. Hofmann, Acta Biomater., 10, 630 (2014).

    PubMed  Google Scholar 

  47. W. L. Ng, W. Y. Yeong, and M. W. Naing, Int. J. Bioprint., 2, 53 (2016).

    CAS  Google Scholar 

  48. P. Le Thi, J. Y. Son, Y. Lee, S. B. Ryu, K. M. Park, and K. D. Park, Macromol. Res., 28, 400 (2020).

    CAS  Google Scholar 

  49. W. Schuurman, P. A. Levett, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, D. W. Hutmacher, F. P. W. Melchels, T. J. Klein, and J. Malda, Macromol. Biosci., 13, 551 (2013).

    CAS  PubMed  Google Scholar 

  50. X. Ma, X. Qu, W. Zhu, Y.-S. Li, S. Yuan, H. Zhang, J. Liu, P. Wang, C. S. E. Lai, F. Zanella, G.-S. Feng, F. Sheikh, S. Chien, and S. Chen, Proc. Natl. Acad. Sci. U.S.A., 113, 2206 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. A. D. Augst, H. J. Kong, and D. J. Mooney, Macromol. Biosci., 6, 623 (2006).

    CAS  PubMed  Google Scholar 

  52. S. J. Bidarra, C. C. Barrias, and P. L. Granja, Acta Biomater., 10, 1646 (2014).

    CAS  PubMed  Google Scholar 

  53. T. Kumar Giri, D. Thakur, A. Alexander, Ajazuddin, H. Badwaik, and D. Krishna Tripathi, Curr. Drug Del., 9, 539 (2012).

    Google Scholar 

  54. K. Lee, S. Choi, C. Kim, W. S. Kang, W. Son, S. C. Bae, J.-W. Oh, S. K. Lee, and C. Cha, ACS Sensors, 4, 2716 (2019).

    CAS  PubMed  Google Scholar 

  55. K. Lee, J. Hong, H. J. Roh, S. H. Kim, H. Lee, S. K. Lee, and C. Cha, Cellulose, 24, 4963 (2017).

    CAS  Google Scholar 

  56. C. Cha, R. H. Kohman, and H. Kong, Adv. Funct. Mater., 19, 3056 (2009).

    CAS  Google Scholar 

  57. J. Jia, D. J. Richards, S. Pollard, Y. Tan, J. Rodriguez, R. P. Visconti, T. C. Trusk, M. J. Yost, H. Yao, R. R. Markwald, and Y. Mei, Acta Biomater., 10, 4323 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. S. Khalil and W. Sun, J. Biomech. Eng., 131, 111002 (2009).

    PubMed  Google Scholar 

  59. C. Colosi, S. R. Shin, V. Manoharan, S. Massa, M. Costantini, A. Barbetta, M. R. Dokmeci, M. Dentini, and A. Khademhosseini, Adv. Mater., 28, 677 (2016).

    CAS  PubMed  Google Scholar 

  60. T. A. E. Ahmed, E. V. Dare, and M. Hincke, Tissue Eng. Part B Rev., 14, 199 (2008).

    CAS  PubMed  Google Scholar 

  61. E. Abelseth, L. Abelseth, L. De la Vega, S. T. Beyer, S. J. Wadsworth, and S. M. Willerth, ACS Biomater. Sci. Eng., 5, 234 (2019).

    CAS  Google Scholar 

  62. K. Zhang, Q. Fu, J. Yoo, X. Chen, P. Chandra, X. Mo, L. Song, A. Atala, and W. Zhao, Acta Biomater., 50, 154 (2017).

    CAS  PubMed  Google Scholar 

  63. H. C. Ott, T. S. Matthiesen, S.-K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, and D. A. Taylor, Nat. Med., 14, 213 (2008).

    CAS  PubMed  Google Scholar 

  64. T. Hoshiba, H. Lu, N. Kawazoe, and G. Chen, Expert Opin. Biol. Ther., 10, 1717 (2010).

    CAS  PubMed  Google Scholar 

  65. B. S. Kim, H. Kim, G. Gao, J. Jang, and D.-W. Cho, Biofabrication, 9, 034104 (2017).

    PubMed  Google Scholar 

  66. E. Garreta, R. Oria, C. Tarantino, M. Pla-Roca, P. Prado, F. Fernández-Avilés, J. M. Campistol, J. Samitier, and N. Montserrat, Mater. Today, 20, 166 (2017).

    CAS  Google Scholar 

  67. X. Ma, C. Yu, P. Wang, W. Xu, X. Wan, C. S. E. Lai, J. Liu, A. Koroleva-Maharajh, and S. Chen, Biomaterials, 185, 310 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. T. Hiller, J. Berg, L. Elomaa, V. Röhrs, I. Ullah, K. Schaar, A.-C. Dietrich, M. A. Al-Zeer, A. Kurtz, A. C. Hocke, S. Hippenstiel, H. Fechner, M. Weinhart, and J. Kurreck, Int. J. Mol. Sci., 19, 3129 (2018).

    PubMed Central  Google Scholar 

  69. F. Pati, J. Jang, D.-H. Ha, S. Won Kim, J.-W. Rhie, J.-H. Shim, D.-H. Kim, and D.-W. Cho, Nat. Commun., 5, 3935 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. K. Knop, R. Hoogenboom, D. Fischer, and U. S. Schubert, Angew. Chem. Int. Ed., 49, 6288 (2010).

    CAS  Google Scholar 

  71. K. T. Nguyen and J. L. West, Biomaterials, 23, 4307 (2002).

    CAS  PubMed  Google Scholar 

  72. A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, Langmuir, 17, 5440 (2001).

    CAS  PubMed  Google Scholar 

  73. W.-G. Koh, A. Revzin, and M. V. Pishko, Langmuir, 18, 2459 (2002).

    CAS  PubMed  Google Scholar 

  74. J. H. Jeong, V. Chan, C. Cha, P. Zorlutuna, C. Dyck, K. J. Hsia, R. Bashir, and H. Kong, Adv. Mater., 24, 58 (2012).

    CAS  PubMed  Google Scholar 

  75. W. Jia, P. S. Gungor-Ozkerim, Y. S. Zhang, K. Yue, K. Zhu, W. Liu, Q. Pi, B. Byambaa, M. R. Dokmeci, S. R. Shin, and A. Khademhosseini, Biomaterials, 106, 58 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Z. Zheng, J. Wu, M. Liu, H. Wang, C. Li, M. J. Rodriguez, G. Li, X. Wang, and D. L. Kaplan, Adv. Healthc. Mater., 7, 1701026 (2018).

    Google Scholar 

  77. R. Suntornnond, E. Y. S. Tan, J. An, and C. K. Chua, Sci. Rep., 7, 16902 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. M. Müller, J. Becher, M. Schnabelrauch, and M. Zenobi-Wong, Biofabrication, 7, 035006 (2015).

    PubMed  Google Scholar 

  79. S. Abbina, S. Vappala, P. Kumar, E. M. J. Siren, C. C. La, U. Abbasi, D. E. Brooks, and J. N. Kizhakkedathu, J. Mater. Chem. B, 5, 9249 (2017).

    CAS  PubMed  Google Scholar 

  80. J. Hong, Y. Shin, S. Kim, J. Lee, and C. Cha, Adv. Funct. Mater., 29, 1808750 (2019).

    Google Scholar 

  81. A. Rahimi and A. Mashak, Plast. Rubber Compos., 42, 223 (2013).

    CAS  Google Scholar 

  82. E. Lemaitre, X. Coqueret, R. Mercier, A. Lablache-Combier, and C. Loucheux, J. Appl. Polym. Sci., 33, 2189 (1987).

    CAS  Google Scholar 

  83. H. Xiang, X. Wang, Z. Ou, G. Lin, J. Yin, Z. Liu, L. Zhang, and X. Liu, Prog. Org. Coat., 137, 105372 (2019).

    CAS  Google Scholar 

  84. F. Liravi and E. Toyserkani, Addit. Manuf., 24, 232 (2018).

    CAS  Google Scholar 

  85. N. Bhattacharjee, A. Urrios, S. Kang, and A. Folch, Lab Chip, 16, 1720 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaenyung Cha.

Additional information

The main focus of bioink technology going forward would be finding the right formulations for successfully managing printability, biomaterials properties, and biocompatibility.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Footnote: The image from this article is used as the cover image of the Volume 28, Issue 8.

Acknowledgments: This study was supported by the 2020 Research Fund (1.200039.01) of UNIST (Ulsan National Institute of Science and Technology), and Basic Science Research Program and Bio & Medical Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2018R1D1A1B07048522, 2017M3A9C6033875).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Cha, C. Advanced Polymer-Based Bioink Technology for Printing Soft Biomaterials. Macromol. Res. 28, 689–702 (2020). https://doi.org/10.1007/s13233-020-8134-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8134-9

Keywords

Navigation