Skip to main content
Log in

Outstanding Degradation Resistance of Hyaluronic Acid Achieved by Flavonoid Conjugations: Rheological Behavior

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The functional conjugations with natural polyphenols could be a working strategy for accomplishing the degradation resistance of hyaluronic acids (HA). Herein, a series of HA conjugates with four different polyphenols with wide ranges in the degree of substitution were systematically prepared. The degradation rate could be retarded in a wide range without crosslinking: The conjugates having polyphenolic aglycone (catechin or quercetin) maintained their structures, as identified by viscosity, for up to 7 weeks in the presence of hyaluronidase. This retardation was outstanding compared to those reported from previous studies, and the physical mixtures of HA and polyphenols still showed significantly more retarded degradation than pristine HA. The degradation resistance could be controlled by varying the feed ratio of polyphenols. This conjugation method of polyphenols could open up new application areas of HA with the outstanding degradation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Williamson, C. D. Kay, and A. Crozier, Compr. Rev. Food Sci. F., 17, 1054 (2018).

    Article  Google Scholar 

  2. S. Srivastava, R. R. Somasagara, M. Hegde, M. Nishana, S. K. Tadi, M. Srivastava, B. Choudhary, and S. C. Raghavan, Sci. Rep., 6, 24049 (2016).

    Article  CAS  Google Scholar 

  3. D. Carmona-Gutierrez, Zimmermann, K. Kainz, F. Pietrocola, G. Chen, S. Maglioni, A. Schiavi, J. Nah, S. Mertel, and C. B. Beuschel, Nat. Commun., 10, 651 (2019).

    Article  CAS  Google Scholar 

  4. G. Regev-Shoshani, O. Shoseyov, I. Bilkis, and Z. Kerem, Biochem. J., 374, 157 (2003).

    Article  CAS  Google Scholar 

  5. K. D. Winter, G. Dewitte, M. E. Dirks-Hofmeister, S. D. Laet, H. Pelantová, V. Křen, and T. Desmet, J. Agri. Food Chem., 63, 10131 (2015).

    Article  CAS  Google Scholar 

  6. M. Shin and H. Lee, Chem. Mater., 29, 8211 (2017).

    Article  CAS  Google Scholar 

  7. K. Halake, M. Birajdar, and J. Lee, J. Ind. Eng. Chem., 35, 1 (2016).

    Article  CAS  Google Scholar 

  8. J. H. Waite and M. L. Tanzer, Science, 212, 1038 (2018).

    Article  Google Scholar 

  9. W. Jiang and M. Hu, RSC Adv., 2, 7948 (2012).

    Article  CAS  Google Scholar 

  10. N. Ihara, S. Schmitz, M. Kurisawa, J. E. Chung, H. Uyama, and S. Kobayashi, Biomacromolecules, 5, 1633 (2004).

    Article  CAS  Google Scholar 

  11. C. E. Schanté, G. Zuber, C. Herlin, and T. F. Vandamme, Carbohydr. Polym., 85, 469 (2011).

    Article  CAS  Google Scholar 

  12. F. Picotti, C. Chung, X. Jia, M. A. Randolph, and R. Langer, Carbohydr. Polym., 93, 273 (2013).

    Article  CAS  Google Scholar 

  13. J. A. Burdick, C. Chung, X. Jia, M. A. Randolph, and R. Langer, Biomacromolecules, 6, 386 (2005).

    Article  CAS  Google Scholar 

  14. K. Halake and J. Lee, J. Ind. Eng. Chem., 54, 44 (2017).

    Article  CAS  Google Scholar 

  15. S. Ahn, K. Halake, and J. Lee, Int. J. Biol. Macromol., 101, 776 (2017).

    Article  CAS  Google Scholar 

  16. J. H. Lee and G.H. Kim, J. Food Sci., 75, H212 (2010).

    Article  CAS  Google Scholar 

  17. S. P. Zhong, D. Campoccia, P. J. Doherty, R. L. Williams, L. Benedetti, and D. F. Williams, Biomaterials, 15, 359 (1994).

    Article  CAS  Google Scholar 

  18. F. Lee, J. E. Chung, K. Xu, and M. Kurisawa, ACS Macro Lett., 4, 957 (2015).

    Article  CAS  Google Scholar 

  19. V. Simulescu, M. Kalina, J. Mondek, and M. Pekar, Carbohydr. Polym., 137, 664 (2016).

    Article  CAS  Google Scholar 

  20. K. Gwon, E. Kim, and G. Tae, Acta Biomater., 49, 284 (2017).

    Article  CAS  Google Scholar 

  21. A. Singh, M. Corvelli, S.A. Unterman, K. A. Wepasnick, P. McDonnell, and J. H. Elisseeff, Nat. Mater., 13, 988 (2014).

    Article  CAS  Google Scholar 

  22. X. Yang, A. Singh, E. Choy, F. J. Hornicek, M. M. Amiji, and Z. Duan, Sci. Rep., 5, 8509 (2015).

    Article  CAS  Google Scholar 

  23. J. Ge, R. Cai, L. Yang, L. Zhang, Y. Jiang, Y. Yang, C. Cui, S. Wan, X. Chu, and W. Tan, ACS Sustain. Chem. Eng., 6, 1655 (2018).

    Google Scholar 

  24. S. Mitragotri, P. A. Burke, and R. Langer, Nat. Rev. Drug Discov., 13, 655 (2014).

    Article  CAS  Google Scholar 

  25. S. Khetan, M. Guvendiren, W. R. Legant, D. M. Cohen, C. S. Chen, and J. A. Burdick, Nat. Mater., 12, 458 (2013).

    Article  CAS  Google Scholar 

  26. G. Palmieri, A. Rinaldi, L. Campagnolo, M. Tortora, M. F. Caso, M. Mattei, A. Notargiacomo, N. Rosato, M. Bottini, and F. Cavalieri, Part. Part. Syst. Charact., 34, 1600411 (2017).

    Article  Google Scholar 

  27. K. L. Chao, L. Muthukumar, and O. Herzberg, Biochemistry, 46, 6911 (2007).

    Article  CAS  Google Scholar 

  28. M. Aviv, M. Halperin-Sternfeld, I. Grigoriants, L. Buzhansky, I. Mironi-Harpaz, D. Seliktar, S. Einav, Z. Nevo, and L. Adler-Abramovich, ACS Appl. Mater. Interfaces, 10, 41883 (2018).

    Article  CAS  Google Scholar 

  29. A. Papadopoulou and R.A. Frazier, Trends Food Sci. Technol., 15, 186 (2004).

    Article  CAS  Google Scholar 

  30. A. M. L. Sousa, T. D. Li, S. Varghese, P. J. Halling, and K. H. Aaron Lau, ACS Appl. Mater. Interfaces, 10, 39353 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghwi Lee.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This work was supported by a National Research Foundation grant from the Korean Ministry of Science, ICT, and Future Planning (Engineering Research Center 2014R1A5A1009799).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halake, K., Lee, J. Outstanding Degradation Resistance of Hyaluronic Acid Achieved by Flavonoid Conjugations: Rheological Behavior. Macromol. Res. 28, 351–355 (2020). https://doi.org/10.1007/s13233-020-8068-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8068-2

Keywords

Navigation