Skip to main content
Log in

Kinetics of Sn(Oct)2-catalyzed ring opening polymerization of ε-caprolactone

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

To evaluate the effects of different alcohols (primary, secondary, and two different tertiary alcohols) as initiators on the structure of polycaprolactone (PCL) in ring-opening polymerization (ROP), four experiments were conducted in toluene with tin(II) 2-ethylhexanoate (Sn(Oct)2) as the catalyst. The kinetics of ε-caprolactone (ε-CL) ROP at different temperatures and monomer concentrations were studied with n-butanol as the initiator and Sn(Oct)2 as the catalyst. The kinetic plot of ln(M0/Mt) vs. time (t) seems a linear, which indicates that the propagation rate is in the first order with respect to monomer concentration. When the reaction temperature increased, the reaction rate and the final relative maximum monomer conversions also increased. The molecular weight of PCL initially increased and then decreased as monomer conversion increased. This behavior can be attributed to the high viscosity of the system, which affected monomer diffusion and polymer chain propagation. In addition, prolonging reaction time caused inter-/intramolecular transesterification. However, when monomer concentration decreased, the reaction rate decreased. The actual activation energy of Sn(Oct)2-catalyzed ROP of ε-CL in toluene was -75 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003).

    Article  CAS  Google Scholar 

  2. H. Seyednejad, A. H. Ghassemi, C. F. van Nostrum, T. Vermonden, and W. E. Hennink, J. Control. Release, 152, 168 (2011).

    Article  CAS  Google Scholar 

  3. J. H. Khan, F. Schue, and G. A. George, Polym. Int., 58, 296 (2009).

    Article  CAS  Google Scholar 

  4. M. Oshimura, A. Takasu, and K. Nagata, Macromolecules, 42, 3086 (2009).

    Article  CAS  Google Scholar 

  5. D. Barbier-Baudry, L. Brachais, A. Cretu, R. Gattin, A. Loupy, and D. Stuerga, Environ. Chem. Lett., 1, 19 (2003).

    Article  CAS  Google Scholar 

  6. A. K. Sutar, T. Maharana, S. Dutta, C.-T. Chena, and C.-C. LinSutar, Chem. Soc. Rev., 39, 1724 (2010).

    Article  CAS  Google Scholar 

  7. N. Susperregui, D. Delcroix, B. Martin-Vaca, D. Bourissou, and L. Maron, J. Org. Chem., 75, 6581 (2010).

    Article  CAS  Google Scholar 

  8. K. J. Thurecht, A. Heise, M. de Geus, S. Villarroya, J. Zhou, M. F. Wyatt, and S. M. Howdle, Macromolecules, 39, 7967 (2006).

    Article  CAS  Google Scholar 

  9. F. C. Loeker, C. J. Duxbury, R. Kumar, W. Gao, R. A. Gross, and S. M. Howdle, Macromolecules, 37, 2450 (2004).

    Article  CAS  Google Scholar 

  10. A. Arbaoui and C. Redshaw, Polym. Chem., 1, 801 (2010).

    Article  CAS  Google Scholar 

  11. Y. Pérez, I. del Hierro, L. Zazo, R. Fernández-Galánb, and M. Fajardoa, Dalton Trans., 44, 4088 (2015).

    Article  Google Scholar 

  12. F. Stassin and R. Jérome, Chem. Commun., 1, 232 (2003).

    Article  Google Scholar 

  13. M. Ryner, A. Finne, A.-C. Albertsson, and H. R. Kricheldorf, Macromolecules, 34, 7281 (2001).

    Article  CAS  Google Scholar 

  14. M. Möller, R. Kånge, and J. L. Hedrick, J. Polym. Sci., Part A: Polym. Chem., 38, 2067 (2000).

    Article  Google Scholar 

  15. C. Sattayanon, W. Sontising, J. Jitonnom, P. Meepowpan, W. Punyodom, and N. Kungwan, Comput. Theor. Chem., 1044, 29 (2014).

    Article  CAS  Google Scholar 

  16. J. T. Hong, N. S. Cho, H. S. Yoon, T. H. Kim, D. H. Lee, and W. G. Kim, J. Polym. Sci., Part A: Polym. Chem., 43, 2790 (2005).

    Article  CAS  Google Scholar 

  17. Y. J. Chen, H. J. Fang, S. C. N. Hsu, N. Y. Jheng, H. C. Chang, S. W. Ou, W. T. Peng, Y. C. Lai, J. Y. Chen, P. L. Chen, C. H. Kao, Z. X. Zeng, J. L. Chen, and H. Y. Chen, Polym. Bull., 70, 993 (2013).

    Article  CAS  Google Scholar 

  18. C. S. Xiao, Y. C. Wang, J. Z. Du, X. S. Chen, and J. Wang, Macromolecules, 39, 6825 (2006).

    Article  CAS  Google Scholar 

  19. J. W. Leenslag, and A. J. Pennings, Makromol. Chem., 188, 1809 (1987).

    Article  CAS  Google Scholar 

  20. D. Bratton, M. Brown, and S. M. Howdle, Macromolecules, 38, 1190 (2005).

    Article  CAS  Google Scholar 

  21. A. J. Nijenhuis, D. W. Grijpma, and A. J. Pennings, Macromolecules, 25, 6419 (1992).

    Article  CAS  Google Scholar 

  22. A.-C. Albertsson and A. Lófgren, J. Macromol. Sci. A, 32, 41 (1995).

    Article  Google Scholar 

  23. G. Rafler and J. Dahlmann, Acta Polym., 43, 91 (1992).

    Article  CAS  Google Scholar 

  24. A. Kowalski, A. Duda, and S. Penczek, Macromolecules, 33, 689 (2000).

    Article  CAS  Google Scholar 

  25. R. F. S. Storey and J. W. Sherman, Macromolecules, 35, 1504 (2002).

    Article  CAS  Google Scholar 

  26. A. Kowalski, A. Duda, and S. Penczek, Macromol. Rapid Commun., 19, 567 (1998).

    CAS  Google Scholar 

  27. W. Meelua, R. Molloy, P. Meepowpan, and W. PunyodomMeelua, J. Polym. Res., 19, 9799 (2012).

    Article  Google Scholar 

  28. C. Yu, L. Zhang, and Z. Shen, Eur. Polym. J., 39, 1021 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 21464012 and No. 21661027), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46), Funds for Distinguished Young Scientists of Xinjiang Bintuan (No. 2014CD001) and Scientific Research Program of Shihezi University (No. RCZX201407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Lv, Y., Guo, R. et al. Kinetics of Sn(Oct)2-catalyzed ring opening polymerization of ε-caprolactone. Macromol. Res. 25, 1070–1075 (2017). https://doi.org/10.1007/s13233-017-5148-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5148-z

Keywords

Navigation