Skip to main content
Log in

Dependence of cross-termination rate on RAFT agent concentration in RAFT polymerization

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Rate retardation is an intrinsic property of reversible addition-fragmentation chain transfer (RAFT) radical polymerization. One of reasons for this phenomenon is cross-termination reaction between intermediate radicals and other active radicals. With the help of Stationary State Model and experimentally controlling on k t,cross , the kinetics of styrene RAFT polymerization were performed at different concentrations of RAFT agent. Results show that there is a difference in two effects of cross-termination rate coefficient and concentration of intermediate radicals on cross-termination at different RAFT agent concentrations: at the low concentration range, the cross-termination reaction is mainly affected by its rate coefficient, and at the high concentration range, the cross-termination reaction is mainly affected by the concentration of the intermediate radicals. It shows that there is an optimal concentrations of RAFT agent for a RAFT polymerization with the least rate retardation by considering the balance between these two effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 31, 5559 (1998).

    Article  CAS  Google Scholar 

  2. G. Moad, E. Rizzardo, and S. H. Thang, Aust. J. Chem., 58, 379 (2005).

    Article  CAS  Google Scholar 

  3. S. Perrier and P. Takolpuckdee, J. Polym. Sci., Part A: Polym. Chem., 43, 5347 (2005).

    Article  CAS  Google Scholar 

  4. A. Gregory and M. H. Stenzel, Prog. Polym. Sci., 37, 38 (2012).

    Article  CAS  Google Scholar 

  5. M. J. Monteiro and H. de Brouwer, Macromolecules, 34, 349 (2001).

    Article  CAS  Google Scholar 

  6. A. Feldermann, M. L. Coote, M. H. Stenzel, T. P. Davis, and C. Barner-Kowollik, J. Am. Chem. Soc., 126, 15915 (2004).

    Article  CAS  Google Scholar 

  7. G. Moad, J. Chiefari, J. Krstina, R. T. A. Mayadunne, A. Postma, E. Rizzardo, and S. H. Thang, Polym. Int., 49, 993 (2000).

    Article  CAS  Google Scholar 

  8. C. Barner-Kowollik, J. F. Quinn, T. U. Nguyen, J. P. Heuts, and T. P. Davis, Macromolecules, 34, 7849 (2001).

    Article  CAS  Google Scholar 

  9. D. Konkolewicz, B. S. Hawkett, A. Grayweale, and S. Perrier, Macromolecules, 41, 6400 (2008).

    Article  CAS  Google Scholar 

  10. D. Konkolewicz, B. S. Hawkett, A. Gray-Weale, and S. Perrier, J. Polym. Sci., Part A: Polym. Chem., 47, 3455 (2009).

    Article  CAS  Google Scholar 

  11. S. S. Ting, T. P. Davis, and P. B. Zetterlund, Macromolecules, 44, 4187 (2011).

    Article  CAS  Google Scholar 

  12. C. Barner-Kowollik, J. F. Quinn, D. R. Morsley, and T. P. Davis, J. Polym. Sci., Part A: Polym. Chem., 39, 1353 (2001).

    Article  CAS  Google Scholar 

  13. C. Barner-Kowollik, M. Buback, B. Charleux, M. L. Coote, M. Drache, T. Fukuda, A. Goto, B. Klumperman, A. B. Lowe, and J. B. Mcleary, J. Polym. Sci., Part A: Polym. Chem., 44, 5809 (2006).

    Article  CAS  Google Scholar 

  14. A. Goto, K. Sato, Y. Tsujii, T. Fukuda, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 34, 402 (2001).

    Article  CAS  Google Scholar 

  15. M. L. Coote, E. H. Krenske, and E. I. Izgorodina, Macromol. Rapid Commun., 27, 473 (2006).

    Article  CAS  Google Scholar 

  16. Y. Kwak, A. Goto, Y. Tsujii, Y. Murata, K. Komatsu, and T. Fukuda, Macromolecules, 35, 3026 (2002).

    Article  CAS  Google Scholar 

  17. F. Calitz, M. Tonge, and R. Sanderson, Macromolecules, 36, 5 (2003).

    Article  CAS  Google Scholar 

  18. F. Calitz, M. Tonge, and R. Sanderson, Macromol. Symp., 193, 277 (2003).

    Article  CAS  Google Scholar 

  19. W. Meiser, J. Barth, M. Buback, H. Kattner, and P. Vana, Macromolecules, 44, 2474 (2011).

    Article  CAS  Google Scholar 

  20. E. Chernikova, V. Golubev, A. Filippov, C. Y. Lin, and M. L. Coote, Polym. Chem., 1, 1437 (2010).

    Article  CAS  Google Scholar 

  21. W. Meiser and M. Buback, Macromol. Rapid Commun., 32, 1490 (2011).

    Article  CAS  Google Scholar 

  22. W. Meiser, M. Buback, O. Ries, C. Ducho, and A. Sidoruk, Macromol. Chem. Phys., 214, 924 (2013).

    Article  CAS  Google Scholar 

  23. V. Golubev, A. Filippov, E. Chernikova, M. Coote, C.-Y. Lin, and G. Gryn’ova, Polym. Sci. Ser. C, 53, 14 (2011).

    Article  CAS  Google Scholar 

  24. K. Ranieri, G. Delaittre, C. Barner-Kowollik, and T. Junkers, Macromol. Rapid Commun., 35, 2023 (2014).

    Article  CAS  Google Scholar 

  25. J. McLeary, J. McKenzie, M. Tonge, R. Sanderson, and B. Klumperman, Chem. Commun., 10,1950 (2004).

    Article  Google Scholar 

  26. J. B. McLeary, M. P. Tonge, and B. Klumperman, Macromol. Rapid Commun., 27, 1233 (2006).

    Article  CAS  Google Scholar 

  27. E. T. van den Dungen, H. Matahwa, J. B. McLeary, R. D. Sanderson, and B. Klumperman, J. Polym. Sci., Part A: Polym. Chem., 46, 2500 (2008).

    Article  Google Scholar 

  28. E. Sivtsov, A. Gostev, E. Parilova, A. Dobrodumov, and E. Chernikova, Polym. Sci. Ser. C, 57, 110 (2015).

    Article  CAS  Google Scholar 

  29. G. Moad, Macromol. Chem. Phys., 215, 9 (2014).

    Article  CAS  Google Scholar 

  30. L. Lv, W. Wu, G. Zou, and Q. Zhang, Polym. Chem., 4, 908 (2013).

    Article  CAS  Google Scholar 

  31. L. Lv, J. Zhou, G. Zou, and Q. Zhang, Macromol. Chem. Phys., 216, 614 (2015).

    Article  CAS  Google Scholar 

  32. J. T. Lai, D. Filla, and R. Shea, Macromolecules, 35, 6754 (2002).

    Article  CAS  Google Scholar 

  33. Y. Kwak, A. Goto, and T. Fukuda, Macromolecules, 37, 1219 (2004).

    Article  CAS  Google Scholar 

  34. E. Chernikova, P. Terpugova, E. Garina, and V. Golubev, Polym. Sci. Ser. A, 49, 108 (2007).

    Article  Google Scholar 

  35. N. J. Turro and B. Kraeutler, Acc. Chem. Res., 13, 369 (1980).

    Article  CAS  Google Scholar 

  36. I. V. Khudyakov, Y. A. Serebrennikov, and N. J. Turro, Chem. Rev., 93, 537 (1993).

    Article  CAS  Google Scholar 

  37. O. F. Olaj, P. Vana, M. Zoder, A. Kornherr, and G. Zifferer, Macromol. Rapid commun., 21, 913 (2000).

    Article  CAS  Google Scholar 

  38. X. Han, J. Fan, J. He, J. Xu, D. Fan, and Y. Yang, Macromolecules, 40, 5618 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qijin Zhang.

Additional information

Acknowledgments: The authors gratefully acknowledge support from the National Science Foundation of China (NSFC) (51673178, 51273186, 21574120, 11404087); Basic Research Funds for the Central Universities (WK2060200012); Science and Technological Fund of Anhui Province for Outstanding Youth (1608085J01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Lv, L., Zou, G. et al. Dependence of cross-termination rate on RAFT agent concentration in RAFT polymerization. Macromol. Res. 25, 931–935 (2017). https://doi.org/10.1007/s13233-017-5099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5099-4

Keywords

Navigation