Skip to main content
Log in

Reactive compatibilization of biodegradable poly(butylene succinate)/Spirulina microalgae composites

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Innovative poly(butylene succinate) (PBS)/Spirulina composites were fabricated by melt blending. Maleic anhydride-grafted PBS (PBS-g-MAH) was synthesized and used as a compatibilizer in the composites. Extra amount of water was added to Spirulina to ensure that it acted as a plastic during blending with PBS. The tensile strength and Young’s modulus of the composites considerably increased after incorporation of PBS-g-MAH due to better interfacial adhesion between the components and better dispersion of Spirulina in the PBS matrix, which were verified by scanning electron microscopy. Fourier transform infrared spectroscopy analysis also indicated the reaction between PBS-g-MAH and Spirulina, which resulted in improved Spirulina-PBS interaction. Differential scanning calorimetry analysis revealed that the crystallization temperature of the composites increased after addition of PBS-g-MAH, especially for the composites with higher Spirulina loading, while the PBS in compatibilized composites exhibited higher enthalpies. However, the compatibilized composites exhibited slight decreases of degradation temperature accompanied by slightly higher weight loss as indicated by thermal gravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Zini and M. Scandola, Polym. Compos., 32, 1905 (2011).

    Article  CAS  Google Scholar 

  2. R. Muthuraj, M. Misra, and A. K. Mohanty, ACS Sustain. Chem. Eng., 3, 2767 (2015).

    Article  CAS  Google Scholar 

  3. A. A. Shah, F. Hasan, A. Hameed, and S. Ahmed, Biotechnol. Adv., 26, 246 (2008).

    Article  CAS  Google Scholar 

  4. J. Xu and B.-H. Guo, Biotechnol. J., 5, 1149 (2010).

    Article  CAS  Google Scholar 

  5. Y. Du, S. Li, Y. Zhang, C. Rempel, and Q. Liu, J. Appl. Polym. Sci., 133, 43351 (2016).

    Article  Google Scholar 

  6. V. M. Hernandez-Izquierdo and J. M. Krochta, J. Food Sci., 73, 30 (2008).

    Article  Google Scholar 

  7. A. H. Brandenburg, C. L. Weller, and R. F. Testin, J. Food Sci., 58, 1086 (1993).

    Article  CAS  Google Scholar 

  8. Z. Zhong and X. S. Sun, Polymer, 42, 6961 (2001).

    Article  CAS  Google Scholar 

  9. J. Zhang, L. Jiang, L. Zhu, J.-L. Jane, and P. Mungara, Biomacromolecules, 7, 1551 (2006).

    Article  CAS  Google Scholar 

  10. F. Chen and J. Zhang, ACS Appl. Mater. Interfaces, 2, 3324 (2010).

    Article  CAS  Google Scholar 

  11. M. A. Zeller, R. Hunt, A. Jones, and S. Sharma, J. Appl. Polym. Sci., 130, 3263 (2013).

    Article  CAS  Google Scholar 

  12. H. Duan, R. Ma, X. Xu, F. Kong, S. Zhang, W. Kong, J. Hao, and L. Shang, Environ. Sci. Technol., 43, 3522 (2009).

    Article  CAS  Google Scholar 

  13. E. W. Becker, Biotechnol. Adv., 25, 207 (2007).

    Article  CAS  Google Scholar 

  14. C. Toro, M. Reddy, R. Navia, M. Rivas, M. Misra, and A. Mohanty, J. Polym. Environ., 21, 944 (2013).

    Article  CAS  Google Scholar 

  15. S. Torres, R. Navia, R. Campbell Murdy, P. Cooke, M. Misra, and A. K. Mohanty, ACS Sustain. Chem. Eng., 3, 614 (2015).

    Article  CAS  Google Scholar 

  16. Z. A. M. Ishak, Y. J. Phua, and W. S. Chow, eXPRESS Polym. Lett., 7, 340 (2013).

    Article  Google Scholar 

  17. Q. Yin, F. Chen, H. Zhang, and C. Liu, Plast. Rubber Compos., 44, 362 (2015).

    Article  CAS  Google Scholar 

  18. R. Mani, M. Bhattacharya, and J. Tang, J. Polym. Sci., Part A: Polym. Chem., 37, 1693 (1999).

    Article  CAS  Google Scholar 

  19. Y. Nabar, J. M. Raquez, P. Dubois, and R. Narayan, Biomacromolecules, 6, 807 (2005).

    Article  CAS  Google Scholar 

  20. F. Chen and J. Zhang, Polymer, 51, 1812 (2010).

    Article  CAS  Google Scholar 

  21. M.-C. Li, X. Ge, and U. R. Cho, Macromol. Res., 21, 519 (2013).

    Article  CAS  Google Scholar 

  22. M.-C. Li and U. R. Cho, Mater. Lett., 92, 132 (2013).

    Article  CAS  Google Scholar 

  23. T. Mekonnen, M. Misra, and A. K. Mohanty, ACS Sustain. Chem. Eng., 4, 782 (2016).

    Article  CAS  Google Scholar 

  24. R. Zhu, H. Liu, and J. Zhang, Ind. Eng. Chem. Res., 51, 7786 (2012).

    Article  CAS  Google Scholar 

  25. R. R. N. Sailaja, B. G. Girija, G. Madras, and N. Balasubramanian, J. Mater. Sci., 43, 64 (2008).

    Article  CAS  Google Scholar 

  26. X. Zhang and Y. Zhang, Carbohydr. Polym., 134, 52 (2015).

    Article  CAS  Google Scholar 

  27. Y.-D. Li, J.-B. Zeng, W.-D. Li, K.-K. Yang, X.-L. Wang, and Y.-Z. Wang, Ind. Eng. Chem. Res., 48, 4817 (2009).

    Article  CAS  Google Scholar 

  28. P. Chen, H. Tian, L. Zhang, and P. R. Chang, Ind. Eng. Chem. Res., 47, 9389 (2008).

    Article  CAS  Google Scholar 

  29. G. M. MacDonald and B. A. Barry, Biochemistry, 31, 9848 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqing Chen.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, N., Ye, M., Shi, D. et al. Reactive compatibilization of biodegradable poly(butylene succinate)/Spirulina microalgae composites. Macromol. Res. 25, 165–171 (2017). https://doi.org/10.1007/s13233-017-5025-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5025-9

Keywords

Navigation