Skip to main content
Log in

Synthesis and characterization of thermosensitive gelatin hydrogel microspheres in a microfluidic system

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We present a simple synthetic approach for the preparation of monodisperse thermosensitive gelatin microspheres in a microfluidic system. Based on the mechanism of shear force-driven break-off, aqueous droplets of a gelatin solution were continuously produced in an immiscible continuous fluid. Under cooling conditions, the gelatin droplets solidified into hydrogel microspheres, which resulted from the aggregation or crystallization of collagen folds. The produced gelatin microspheres possess a high monodispersity and fast response to environmental temperature. In addition, the size of the prepared microspheres can be manipulated by altering the flow rate of the continuous phase or aqueous phase, and the physical strength of the gelatin microspheres can be controlled by simply changing the gelatin concentration. Furthermore, this approach enables the preparation of monodisperse microspheres with the ability to exhibit different thermosensitivities and encapsulate colloidal particles under mild conditions, which demonstrate sequential release of the desired encapsulants according to the responsive temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. P. Kalshetti, V. B. Rajendra, D. N. Dixit, and P. P. Parekh, Int. J. Pharm. Pharm. Sci., 4, 1 (2012).

    CAS  Google Scholar 

  2. N. A. Peppas, J. Z. Hilt, A. Khademhosseini, and R. Langer, Adv. Mater., 18, 1345 (2006).

    Article  CAS  Google Scholar 

  3. J. Yang, F. Wang, and T. Tan, Korean J. Chem. Eng., 25, 1076 (2008).

    Article  CAS  Google Scholar 

  4. H. M. Shewan and J. R. Stokes, J. Food Eng., 119, 781 (2013).

    Article  CAS  Google Scholar 

  5. A. Gregorova, N. Saha, T. Kitano, and P. Saha, Carbohydr. Polym., 117, 559 (2015).

    Article  CAS  Google Scholar 

  6. J. L. Drury and D. J. Mooney, Biomaterials, 24, 4337 (2003).

    Article  CAS  Google Scholar 

  7. Y. T. Matsunaga, U. Morimoto, and S. Takeuchi, Adv. Healthc. Mater., 23, H90 (2011).

    Article  CAS  Google Scholar 

  8. A. Kikuchi and T. Okano, Adv. Drug Deliv. Rev., 54, 53 (2002).

    Article  CAS  Google Scholar 

  9. M. E. Furth, A. Atala, and M. E. Van dyke, Biomaterials, 28, 5068 (2007).

    Article  CAS  Google Scholar 

  10. N. Das, T. Bera, and A. Mukherjee, Int. J. Pharma Bio Sci., 3, 586 (2012).

    CAS  Google Scholar 

  11. S. Sakai, K. Kawabata, T. Ono, H. Ijima, and K. Kawakami, Biomaterials, 26, 4786 (2005).

    Article  CAS  Google Scholar 

  12. A. Kumachev, J. Greener, E. Tumarkin, E. Eiser, P. W. Zandstra, and E. Kumacheva, Biomaterials, 32, 1477 (2011).

    Article  CAS  Google Scholar 

  13. W. H. Tan and S. Takeuchi, Adv. Mater., 19, 2696 (2007).

    Article  CAS  Google Scholar 

  14. D. Dendukuri, K. Tsoi, T. A. Hatton, and P. S. Doyle, Langmuir, 21, 2113 (2005).

    Article  CAS  Google Scholar 

  15. C. H. Choi, J. H. Jung. T. S. Hwang, and C. S. Lee, Macromol. Res., 17, 163 (2009).

    Article  CAS  Google Scholar 

  16. C. H. Choi, J. Kim, S. M. Kang, J. Lee, and C. S. Lee, Langmuir, 29, 8447 (2013).

    Article  CAS  Google Scholar 

  17. C. H. Choi, J. M. Jeong, S. M. Kang, C. S. Lee, and J. Lee, Adv. Mater., 24, 5078 (2012).

    Article  CAS  Google Scholar 

  18. Y. Li, J. Rodrigues, and H. Tomas, Chem. Soc. Rev., 41, 2193 (2012).

    Article  CAS  Google Scholar 

  19. A. T. Neffe, A. Loebus, A. Zaupa, C. Stoetzel, F. A. Muller, and A. Lendlein, Acta Biomater., 7, 1693 (2011).

    Article  CAS  Google Scholar 

  20. S. Yuan, G. Xiong, A. Roguin, and C. Choong, Biointerphases, 7, 30 (2012).

    Article  CAS  Google Scholar 

  21. K. S. Huang, K. Lu, C. S. Yeh, S. R. Chung, C. H. Lin, C. H. Yang, and Y. S. Dong, J. Control. Release, 137, 15 (2009).

    Article  CAS  Google Scholar 

  22. S. A. Mutalib, N. M. Muin, A. Abdullah, O. Hassan, W. A. W. Mustapha, N. A. Sani, and M.Y. Maskat, LWT-Food Sci. Technol., 63, 714 (2015).

    Article  CAS  Google Scholar 

  23. A. A. Karim and R. Bhay, Trends Food Sci. Technol., 19, 644 (2008).

    Article  CAS  Google Scholar 

  24. V. X. Truong, K. M. Tsang, G. P. Simon, R. L. Boyd, R. A. Evans, H. Thissen, and J. S. Forsythe, Biomacromolecules, 16, 2246 (2015).

    Article  CAS  Google Scholar 

  25. E. M. Ahmed, J. Adv. Res., 6, 105 (2015).

    Article  CAS  Google Scholar 

  26. N. G. Parker and M. J. W. Povey, Food Hydrocoll., 26, 99 (2012).

    Article  CAS  Google Scholar 

  27. Q. Xing, K. Yates, C. Vogt, Z. Qian, M. C. Frost, and F. Zhao, Sci. Rep., 4, 4706 (2014).

    Google Scholar 

  28. G. P. Panizzon, F. G. Bueno, T. U. Nakamura, C. V. Nakamura, and B. P. D. Filho, Pharmaceutics, 6, 599 (2014).

    Article  CAS  Google Scholar 

  29. M. L. Manca, R. Cassano, D. Valenti, S. Trombino, T. Ferrarelli, N. Picci, A. M. Fadda, and M. Manconi, J. Pharm. Pharmacol., 65, 1302 (2013).

    Article  CAS  Google Scholar 

  30. J. Kawadkar, R. Jain, R. Kishore, A. Pathak, and M. K. Chauhan, J. Drug Target., 21, 200 (2013).

    Article  CAS  Google Scholar 

  31. D. M. G. Cruz, V. Sardinha, J. L. E. Ivirico, J. F. Mano, and J. L. G. Ribelles, J. Mater. Sci. Mater. Med., 24, 503 (2013).

    Article  Google Scholar 

  32. P. Hiwale, S. Lampis, G. Conti, C. Caddeo, S. Murgia, A. M. Fadda, and M. Monduzzi, Biomacromolecules, 12, 3186 (2011).

    Article  CAS  Google Scholar 

  33. R. Dinarvand, S. Mahmood, E. Farboud, M. Salehi, and F. Atyabi, Acta Pharm., 55, 57 (2005).

    CAS  Google Scholar 

  34. L. Y. Wang, G. H. Ma, and Z. G. Su, J. Control. Release, 106, 62 (2005).

    Article  CAS  Google Scholar 

  35. G. Khang and J. M. Rhee, Macromol. Res., 11, 207 (2003).

    Article  CAS  Google Scholar 

  36. S. Hwang, C. H. Choi, and C. S. Lee, Macromol. Res., 20, 422 (2012).

    Article  CAS  Google Scholar 

  37. J. W. Hwang, J. H. Choi, B. Choi, G. Lee, S. W. Lee, Y. M. Koo, and W. J. Chang, Korean J. Chem. Eng., 33, 57 (2016).

    Article  CAS  Google Scholar 

  38. C. N. Baroud, F. Gallaire, and R. Dangla, Lab Chip, 10, 2032 (2010).

    Article  CAS  Google Scholar 

  39. S. Y. The, R. Lin, L. H. Hung, and A. P. Lee, Lab Chip, 8, 198 (2008).

    Article  Google Scholar 

  40. Y. S. Huh, S. J. Jeon, E. Z. Lee, H. S. Park, and W. H. Hong, Korean J. Chem. Eng., 28, 633 (2011).

    Article  CAS  Google Scholar 

  41. G. M. Whitesides, Nature, 442, 367 (2006).

    Article  Google Scholar 

  42. H. H. Jeong, Y. M. Noh, S. C. Jang, and C. S. Lee, Korean Chem. Eng. Res., 52, 141 (2014).

    Article  CAS  Google Scholar 

  43. C. Yan and D. J. Pochan, Chem. Soc. Rev., 39, 3528 (2010).

    Article  CAS  Google Scholar 

  44. J. H. Xu, C. S. Luo, S. W. Li, and G. G. Chen, Lab Chip, 6, 131 (2006).

    Article  CAS  Google Scholar 

  45. C. H. Choi, J. H. Jung, Y. W. Rhee, D. P. Kim, S. E. Shim, and C. S. Lee, Biomed. Microdevices, 9, 855 (2007).

    Article  CAS  Google Scholar 

  46. C. H. Choi, J. H. Jung, D. W. Kim, Y. M. Chung, and C. S. Lee, Lab Chip, 8, 1544 (2008).

    Article  CAS  Google Scholar 

  47. S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin, and G. M. Whitesides, Angew. Chem. Int. Ed., 45, 724 (2005).

    Article  Google Scholar 

  48. C. H. Yeh, K. R. Chen, and Y. C. Lin, Microfluid. Nanofluidics, 15, 775 (2013).

    Article  CAS  Google Scholar 

  49. T. Kawakatsu, G. Tragardh, Ch. Tragardh, M. Nakajima, N. Oda, and T. Yonemoto, Colloids Surf. A, 179, 29 (2001).

    Article  CAS  Google Scholar 

  50. R. N. R. M. Hafidz, C. M. Yaakob, I. Amin, and A. Noorfaizan, Int. Food Res. J., 18, 813 (2011).

    CAS  Google Scholar 

  51. S. M. Cho, Y. S. Gu, and S. B. Kim, Food Hydrocoll., 19, 221 (2005).

    Article  CAS  Google Scholar 

  52. S. S. Choi and J. M. Regenstein, Food Chem. Toxicol., 65, 194 (2000).

    CAS  Google Scholar 

  53. J. M. Mitchison and M. M. Swann, J. Exp. Biol., 31, 461 (1954).

    Google Scholar 

  54. T. Boudou, J. Ohayon, Y. Arntz, G. Finet, C. Picart, and P. Tracqui, J. Biomech., 9, 1677 (2006).

    Article  Google Scholar 

  55. M. Chau, M. Abolhasani, H. T. Aubin, Y. Li, Y. Wang, D. Velasco, E. Tumarkin, A. Ramachandran, and E. Kumacheva, Biomacromolecules, 15, 2419 (2014).

    Article  CAS  Google Scholar 

  56. A. W. L. Jay and M. A. Edwards, Can. J. Physiol. Pharmacol., 46, 731 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, KS., Kim, C., Nam, JO. et al. Synthesis and characterization of thermosensitive gelatin hydrogel microspheres in a microfluidic system. Macromol. Res. 24, 529–536 (2016). https://doi.org/10.1007/s13233-016-4069-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4069-6

Keywords

Navigation