Skip to main content
Log in

Controlling gas permeability of a graft copolymer membrane using solvent vapor treatment

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A strategy is reported that combines assembled nanostructures and solvent vapor treatment to manipulate the gas permeability of graft copolymer membranes. The VC-g-POEM graft copolymer consists of poly(vinyl chloride) (PVC) main chains and poly(oxyethylene methacrylate) (POEM) side chains, and was synthesized via atom transfer radical polymerization (ATRP). When the PVC-g-POEM membrane was treated with a good solvent vapor such as acetone, the CO2 permeability increased from 107 to 145 Barrer (1 Barrer=10−10 cm3(STP)·cm·cm−2·s−1·cmHg−1), which is approximately a 36% improvement compared to an untreated sample. However, the permeability was significantly reduced from 107 to 45 and 38 Barrer upon being treated with a selective (methanol) or poor solvent (hexane). The structure-property relation of the solvent-vapor-treated membranes was investigated using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles, and M. D. Guiver, Nat. Mater., 10, 372 (2011).

    Article  CAS  Google Scholar 

  2. P. Bernardo, E. Drioli, and G. Golemme, Ind. Eng. Chem. Res., 48, 4638 (2009).

    Article  CAS  Google Scholar 

  3. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. V. Wagner, B. D. Freeman, and D. J. Cookson, Science, 318, 254 (2007).

    Article  CAS  Google Scholar 

  4. M. Wang, Z. Wang, S. Li, C. Zhang, J. Wang, and S. Wang, Energy Environ. Sci., 6, 539 (2013).

    Article  CAS  Google Scholar 

  5. B. Xue, X. Li, L. Gao, M. Gao, Y. Wang, and L. Jiang, J. Mater. Chem., 22, 10918 (2012).

    Article  CAS  Google Scholar 

  6. L. M. Robeson, J. Memb. Sci., 320, 390 (2008).

    Article  CAS  Google Scholar 

  7. J. G. Muldoon, P. N. Pintauro, R. J. Wysick, J. Lin, C. J. Orme, and F. F. Stewart, J. Memb. Sci., 334, 74 (2009).

    Article  CAS  Google Scholar 

  8. D. J. Kim, S. M. Woo, and S. Y. Nam, Macromol. Res., 20, 1075 (2012).

    Article  CAS  Google Scholar 

  9. J. H. Lee, J. Hong, J. H. Kim, Y. S. Kang, and S. W. Kang, Chem. Commun., 48, 5298 (2012).

    Article  CAS  Google Scholar 

  10. J. H. Lee, I. S. Chae, D. Song, Y. S. Kang, and S. W. Kang. Sep. Purif. Technol., 112, 49 (2013).

    Article  CAS  Google Scholar 

  11. W. S. Chi, S. U. Hong, B. Jung, S. W. Kang, Y. S. Kang, and J. H. Kim, J. Memb. Sci. 443, 51 (2013).

    Google Scholar 

  12. L. Shao, T.-S. Chung, G. Wensley, S. H. Goh, and K. P. Pramoda, J. Memb. Sci., 244, 77 (2004).

    Article  CAS  Google Scholar 

  13. R. Recio, L. Palacio, P. Prádanos, A. Hernández, A. E. Lozano, A. Marcos, J. G. de la Campa, and J. de Abajo, J. Memb. Sci., 293, 22 (2007).

    Article  CAS  Google Scholar 

  14. M. G. Buonomenna, W. Yave, and G. Golemme, RSC Adv., 2, 10745 (2012).

    Article  CAS  Google Scholar 

  15. A. Car, C. Stropnik, W. Yave, and K.-V. Peinemann, Adv. Funct. Mater., 18, 2815 (2008).

    Article  CAS  Google Scholar 

  16. Y. Gu and T. P. Lodge, Macromolecules, 44, 1732 (2011).

    Article  CAS  Google Scholar 

  17. M. Zhang and T. P. Russell, Macromolecules, 39, 3531 (2006).

    Article  CAS  Google Scholar 

  18. Y. W. Kim, J. K. Choi, J. T. Park, and J. H. Kim, J. Memb. Sci., 313, 315 (2008).

    Article  CAS  Google Scholar 

  19. W.-H. Huang, P.-Y. Chen, and S.-H. Tung, Macromolecules, 45, 1562 (2012).

    Article  CAS  Google Scholar 

  20. A. B. Orofino, M. F. Camezzana, M. J. Galante, P. A. Oyanguren, and I. A. Zucchi, Nanotechnology, 23, 115604 (2012).

    Article  CAS  Google Scholar 

  21. S. H. Ahn, J. A. Seo, J. H. Kim, Y. Ko, and S. U. Hong, J. Memb. Sci., 345, 128 (2009).

    Article  CAS  Google Scholar 

  22. S. H. Ahn, J. T. Park, J. H. Kim, Y. Ko, and S. U. Hong, Macromol. Res., 19, 1195 (2011).

    Article  CAS  Google Scholar 

  23. S. H. Ahn, J. T. Park, J. K. Koh, D. K. Roh, and J. H. Kim, Chem. Commun., 47, 5882 (2011).

    Article  CAS  Google Scholar 

  24. S. H. Ahn, W. S. Chi, J. T. Park, J. K. Koh, D. K. Roh, and J. H. Kim, Adv. Mater., 24, 519 (2012).

    Article  CAS  Google Scholar 

  25. J. Bicerano, Prediction of Polymer Properties, Marcel Dekker, Inc., New York, 1996 (Note that the solubility parameter of POEM was calculated using the group contribution method).

    Google Scholar 

  26. P. E. Trapa, Y. Y. Won, S. C. Mui, E. A. Olivetti, B. Huang, D. R. Sadoway, A. M. Mayes, and S. J. Dallek, Electrochem. Soc., 152, A1 (2005).

    Article  CAS  Google Scholar 

  27. J. Kim, J. K. Koh, B. Kim, S. H. Ahn, H. Ahn, D. Y. Ryu, J. H. Kim, and E. Kim, Adv. Funct. Mater., 21, 4633 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung-Keun Lee, Bumsuk Jung or Jong Hak Kim.

Additional information

The image from this article is used as the cover image of the Volume 22, Issue 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, S.H., Kim, S.J., Roh, D.K. et al. Controlling gas permeability of a graft copolymer membrane using solvent vapor treatment. Macromol. Res. 22, 160–164 (2014). https://doi.org/10.1007/s13233-014-2014-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2014-0

Keywords

Navigation