Skip to main content
Log in

Effect of stiffness on tumbling dynamics of short worm-like polymers under mixed flows

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This study examined the effects of the stiffness on the tumbling dynamics of short semi-flexible polymers in mixed flows varying from simple shear to pure rotation, as an extension of a previous study on rod-like polymers. A multi bead-rod model with bending potential was adopted and represented the stiffness or persistence length of the polymers. The rotational time and angular distribution of the semi-flexible chains were examined in mixed flows. These results were compared with previous theoretical predictions and numerical simulations of rod-like polymers. Furthermore, the angular distribution of the short semi-flexible polymers was strongly dependent upon the stiffness of the polymers. These results are expected to be helpful in the development of lab-on-a-chip applications, such as the separation of short DNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-L. Viovy, Rev. Mod. Phys., 72, 813 (2000).

    Article  CAS  Google Scholar 

  2. H. J. Choi, S. T. Lim, P.-Y. Lai, and C. K. Chan, Phys. Rev. Lett., 89, 088302 (2002).

    Article  CAS  Google Scholar 

  3. J. W. Larson, G. R. Yantz, Q. Zhong, R. Charnas, C. M. D’Antoni, M. V. Gallo, K. A. Gillis, L. A. Neely, K. M. Phillips, G. G. Wong, S. R. Gullans, and R. Gilmanshin, Lab Chip, 6, 1187 (2006).

    Article  CAS  Google Scholar 

  4. G. C. Randall, K. M. Schultz, and P. S. Doyle, Lab Chip, 6, 516 (2006).

    Article  CAS  Google Scholar 

  5. J. M. Kim and P. S. Doyle, Lab Chip, 7, 213 (2007).

    Article  CAS  Google Scholar 

  6. J. S. Lee, E. S. G. Shaqfeh, and S. J. Muller, Phys. Rev. E, 75, 040802 (2007).

    Article  Google Scholar 

  7. R. G. Larson, J. Rheol., 49, 1 (2005).

    Article  CAS  Google Scholar 

  8. T. T. Perkins, D. E. Smith, and S. Chu, Science, 276, 2016 (1997).

    Article  CAS  Google Scholar 

  9. D. E. Smith, H. P. Babcock, and S. Chu, Science, 283, 1724 (1999).

    Article  CAS  Google Scholar 

  10. R. E. Teixeira, H. P. Babcock, E. S. G. Shaqfeh, and S. Chu, Macromolecules, 38, 581 (2005).

    Article  CAS  Google Scholar 

  11. E. S. G. Shaqfeh, J. Non-Newton. Fluid Mech., 130, 1 (2005).

    Article  CAS  Google Scholar 

  12. J. Fu, P. Mao, and J. Han, Appl. Phys. Lett., 87, 263902 (2005).

    Article  Google Scholar 

  13. J. Fu, J. Yoo, and J. Han, Phys. Rev. Lett., 97, 018103 (2006).

    Article  Google Scholar 

  14. J. Fu, R. B. Schoch, A. L. Stevens, S. R. Tannenbaum, and J. Han, Nature Nanotech., 2, 121 (2007).

    Article  CAS  Google Scholar 

  15. N. Laachi, C. Declet, C. Matson, and K. D. Dorfman, Phys. Rev. Lett., 98, 098106 (2007).

    Article  Google Scholar 

  16. J. S. Lee and J. M. Kim, Macromol. Res., 17, 807 (2009).

    CAS  Google Scholar 

  17. O. Kratky and G. Porod, Recl. Trav. Chim. Pays-Bas, 68, 1106 (1949).

    Article  CAS  Google Scholar 

  18. J. Wang and H. Gao, J. Chem. Phys., 123, 084906 (2005).

    Article  Google Scholar 

  19. D. A. Kessler and Y. Rabin, J. Chem. Phys., 121, 1155 (2004).

    Article  CAS  Google Scholar 

  20. Y. Gratton and G. W. Slater, Eur. Phys. J. E, 17, 455 (2005).

    Article  CAS  Google Scholar 

  21. B. Maier and J. O. Radler, Macromolecules, 33, 7185 (2000).

    Article  CAS  Google Scholar 

  22. R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Kinetic Theory, Wiley, New York, 1987, Vol. 2.

    Google Scholar 

  23. S. Gerashchenko and V. Steinberg, Phys. Rev. Lett., 96, 038304 (2006).

    Article  Google Scholar 

  24. A. Puliafito and K. Turitsyn, Physica D, 211, 9 (2005).

    Article  CAS  Google Scholar 

  25. A. Celani, A. Puliafito, and K. Turitsyn, Europhys. Lett., 70, 464 (2005).

    Article  CAS  Google Scholar 

  26. K. S. Turitsyn, J. Exp. Theo. Phys., 105, 655 (2007).

    Article  CAS  Google Scholar 

  27. J. Kierfeld, O. Niamploy, V. Sa-yakanit, and R. Lipowsky, Eur. Phys. J. E, 14, 17 (2004).

    Article  CAS  Google Scholar 

  28. G. Chirico and J. Langowski, Biopolymers, 34, 415 (1994).

    Article  CAS  Google Scholar 

  29. H. C. Oettinger, Stochastic Processes in Polymeric Fluids, Springer, Berlin, 1996.

    Google Scholar 

  30. T. W. Liu, J. Chem. Phys., 90, 5826 (1989).

    Article  CAS  Google Scholar 

  31. J. F. Marko and E. D. Siggia, Macromolecules, 28, 8759 (1995).

    Article  CAS  Google Scholar 

  32. C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Science, 265, 1599 (1994).

    Article  CAS  Google Scholar 

  33. L. E. Becker and M. J. Shelley, Phys. Rev. Lett., 87, 198301 (2001).

    Article  CAS  Google Scholar 

  34. T. Munk, O. Hallatschek, C. H. Wiggins, and E. Frey, Phys. Rev. E, 74, 041911 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Min Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.S., Kim, J.M. Effect of stiffness on tumbling dynamics of short worm-like polymers under mixed flows. Macromol. Res. 19, 273–279 (2011). https://doi.org/10.1007/s13233-011-0305-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-0305-2

Keywords

Navigation