Skip to main content
Log in

Influence of GMA grafted MWNTs on physical and rheological properties of PMMA-based nanocomposites by in situ polymerization

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, multi-walled carbon nanotubes (MWNTs) reinforced poly (methyl methacrylate) (PMMA) nanocomposites were prepared by in situ polymerization. Glycidyl methacrylate (GMA) grafted MWNTs (GMA-MWNTs) were used to improve the compatibility between the MWNTs and the PMMA matrix. The physical and rheological properties of the PMMA nanocomposites with different GMA-MWNT contents were examined. The GMA-MWNTs were embedded homogeneously into the PMMA matrix by in situ polymerization. A uniform dispersion of GMA-MWNTs produced nanocomposites with enhanced physical properties. The maximum tensile strength was observed with the 2.0 wt% GMA-MWNT loading, and was 41% higher than that of pure PMMA. In addition, the viscosity of the nanocomposites was increased gradually by the addition of GMA-MWNTs. The storage (G′) and loss modulus (G″) were increased significantly by increasing the GMA-MWNT content, which was attributed to the strong interaction between highly dispersed GMA-MWNTs and PMMA matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science, 287, 637 (2000).

    Article  CAS  Google Scholar 

  2. A. Peigney, C. H. Laurent, E. Flahaut, R. R. Bacsa, and A. Rousset, Carbon, 39, 507 (2001).

    Article  CAS  Google Scholar 

  3. K. H. Kim and W. H. Jo, Macromol. Res., 16, 749 (2008).

    CAS  Google Scholar 

  4. M. Estili, A. Kawasaki, H. Sakamoto, Y. Mekuchi, M. Kuno, and T. Tsukada, Acta Mater., 56, 4070 (2008).

    Article  CAS  Google Scholar 

  5. A. M. K. Esawi, K. Morsi, A. Sayed, A. Abdel Gawad, and P. Borah, Mater. Sci. Eng. A, 508, 167 (2009).

    Article  Google Scholar 

  6. Q. Zheng, Q. Xue, K. Yan, X. Gao, Q. Li, and L. Hao, Polymer, 49, 800 (2008).

    Article  CAS  Google Scholar 

  7. Q. H. Zhang, S. Rastogi, D. J. Chen, D. Lippits, and P. J. Lemstra, Carbon, 44, 778 (2006).

    Article  CAS  Google Scholar 

  8. J. Wang, M. Musameh, and Y. Lin, J. Am. Chem. Soc., 125, 2408 (2003).

    Article  CAS  Google Scholar 

  9. A. Nojeh, G. W. Lakatos, S. Peng, K. Cho, and R. F. W. Pease, Nano Lett., 3, 1187 (2003).

    Article  CAS  Google Scholar 

  10. H. J. Jin, H. J. Choi, S. H. Yoon, S. J. Myung, and S. E. Shim, Chem. Mater., 17, 4034 (2005).

    Article  CAS  Google Scholar 

  11. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, W. Bauhofer, and K. Schulte, Compos. Part A, 36, 1525 (2005).

    Article  Google Scholar 

  12. M. A. L. Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, Carbon, 43, 1499 (2005).

    Article  CAS  Google Scholar 

  13. S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, and M. S. Jhon, Macromol. Rapid Commum., 24, 1070 (2003).

    Article  CAS  Google Scholar 

  14. Y. Q. Liu, Z. L. Yao, and A. Adronov, Macromolecules, 38, 1172 (2005).

    Article  CAS  Google Scholar 

  15. M. N. Zhang, L. Su, and L. Q. Mao, Carbon, 44, 276 (2006).

    Article  CAS  Google Scholar 

  16. M. J. Sobkowicz, J. R. Dorgan, K. W. Gneshin, A. M. Herring, and J. T. McKinnon, Carbon, 47, 622 (2009).

    Article  CAS  Google Scholar 

  17. B. X. Yang, K. P. Pramoda, G. Q. Xu, and S. H. Goh, Adv. Funct. Mater., 17, 2062 (2007).

    Article  CAS  Google Scholar 

  18. J. Yuan and K. M. Liew, Carbon, 47, 713 (2009).

    Article  CAS  Google Scholar 

  19. Y. Zheng, J. Zhang, Y. Xiaodong, W. Chen, and R. Wang, J. Appl. Polym. Sci., 112, 1755 (2009).

    Article  CAS  Google Scholar 

  20. S. J. Park and J. S. Kim, Carbon, 39, 2011 (2001).

    Article  CAS  Google Scholar 

  21. M. Coskun and K. Demirelli, Polym. Degrad. Stabil., 51, 173 (1996).

    Article  CAS  Google Scholar 

  22. M. Xiao, Y. Lu, S. J. Wang, Y. F. Zhao, and Y. Z. Meng, J. Power Sources, 160, 165 (2006).

    Article  CAS  Google Scholar 

  23. B. K. Zhu, S. H. Xie, Z. K. Xu, and Y. Y. Xu, Comps. Sci. Technol., 66, 548 (2006).

    Article  CAS  Google Scholar 

  24. C. A. Martin, J. K. W. Sandler, M. S. P. Shaffer, M. K. Schwarz, W. Bauhofer, K. Schulte, and A. H. Windle, Comp. Sci. Technol., 64, 2309 (2004).

    Article  CAS  Google Scholar 

  25. M. K. Seo, J. R. Lee, and S. J. Park, Mater. Sci. Eng. A, 404, 79 (2005).

    Article  Google Scholar 

  26. E. Franchini, J. Galy, and J. F. Gérard, J. Colloid Interface Sci., 329, 38 (2009).

    Article  CAS  Google Scholar 

  27. H. J. Choi, J. Y. Lim, and K. Zhang, Diamond Relate. Mater., 17, 1498 (2008).

    Article  CAS  Google Scholar 

  28. M. S. Han, Y. K. Lee, W. N. Kim, H. S. Lee, J. S. Joo, M. Park, H. J. Lee, and C. R. Park, Macromol. Res., 17, 863 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KS., Byun, JH., Lee, GH. et al. Influence of GMA grafted MWNTs on physical and rheological properties of PMMA-based nanocomposites by in situ polymerization. Macromol. Res. 19, 14–20 (2011). https://doi.org/10.1007/s13233-011-0101-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-0101-z

Keywords

Navigation