Skip to main content
Log in

Occurrence and geographical distribution of mangrove fungi

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

This is a multidimensional review of mangrove fungi occurring as saprobes, pathogens and endophytes of a wide range of host substrates and those isolated from the water columns and sediments in mangroves. Eight-hundred and fifty taxa including 658 that are supported by both morphology and molecular data and 192 with only morphological data are listed. These constitute Ascomycota, the dominant group with 773 species, and 58 Basidiomycota, one Blastocladiomycota, five Chytridiomycota, and 13 Mucoromycota. This study also includes data on mangrove yeasts 103 Ascomycota, 39 Basidiomycota and 193 taxa isolated from sediments. Endophytes isolated from submerged parts of mangrove plants total 38. The most specious orders of mangrove fungi are Pleosporales 133, Saccharomycetales 102, Microascales 101, Eurotiales 87, Hypocreales 60 and Xylariales 54. Speciose genera include Candida 39, Aspergillus 53, Penicillium 17 and Corollospora 16. The highest number of mangrove fungi have been recorded from the Pacific Ocean 553, which is the largest ocean, followed by Indian 408 and Atlantic Oceans 259. Geographical distribution of mangrove fungi varied from ocean to ocean with only 109 taxa common to the Atlantic, Indian and Pacific Oceans. Of the various countries reported for mangrove fungi, India accommodates the highest number (339) followed by Thailand 303, Malaysia 171, Florida Everglades, USA 134 and Brunei 134. A total of 60 different mangrove plants and their associates have been surveyed for mangrove fungi. These results are discussed and compared with previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Reproduced from CoastalWiki, Flanders Marine Institute

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Abdel-Wahab MA (2005) Diversity of marine fungi from Egyptian Red Sea mangroves. Bot Mar 48:348–355

    Google Scholar 

  • Abdel-Wahab MA, Pang KL, Nagahama T, Abdel-Aziz FA, Jones EBG (2010) Phylogenetic evaluation of anamorphic species of Cirrenalia and Cumulospora with the description of eight new genera and four new species. Mycol Prog 9:537–558

    Google Scholar 

  • Abdel-Wahab MA, Hodhod MS, Bakhali AH, Jones EBG (2014) Marine fungi of Saudi Arabia. Bot Mar 57:323–335

    Google Scholar 

  • Abdel-Wahab MA, Bahkali AH, Jones EBG, Elgorbani A, Abdel-Aziz FA, Hodhodi MS, Al-Hebshi MO (2016) Two new species of Kallichroma (Bionecteriaceae, Hypocreales) from mangroves of Saudi Arabia. Phytotaxa 260:66–74

    Google Scholar 

  • Abdel-Wahab MA, Dayarathne MC, Suetrong S, Guo SY, Alias SA, Bahkali AH, Nagahama T, Elgorban AM, Abdel-Aziz FA, Hodhod MS, Al-Hebshi MO, Hyde KD, Nor NA, Pang KL, Jones E (2017) New saprobic marine fungi and a new combination. Bot Mar 60:469–488

    CAS  Google Scholar 

  • Abdel-Wahab MA, Jones EBG, Bahkali AH, El-Gorban AM (2019a) Marine fungi from Red Sea mangroves in Saudi Arabia with Fulvocentrum rubrum sp. nov. (Torpedosporales, Ascomycota). Nova Hedwigia 108:365–377

    Google Scholar 

  • Abdel-Wahab MA, Jones EBG, Bahkali AH, El-Gorban AM (2019b) Nia lenicarpa sp. nov. (Niaceae, Agaricales) from Red Sea mangroves in Saudi Arabia with comments on Nia vibrissa. Phytotaxa 406:157–168

    Google Scholar 

  • Aleem AA (1980) Distribution and ecology of marine fungi in Sierra Leone (tropical West Africa). Bot Mar 23:679–688

    Google Scholar 

  • Alias SA, Jones EBG (2000a) Colonization of mangrove wood by marine fungi at Kuala Selangor mangrove stand, Malaysia. In: Aquatic Mycology Across the Millennium. (eds KD Hyde, WH Ho, SB. Pointing). Fungal Divers 5:9–21

    Google Scholar 

  • Alias SA, Jones EBG (2000b) Vertical distribution of marine fungi on Rhizophora apiculata at Morib mangrove, Selangor, Malaysia. Mycoscience 41:431–436

    Google Scholar 

  • Alias SA, Jones EBG (2009) Fungi from mangroves of Malaysia. Inst Ocean Earth Sci Uni Malaya 54:1–109

    Google Scholar 

  • Alias SA, Jones EBG, Kuthubutheen AJ (1995) Frequency of occurrence of fungi on wood in Malaysian mangroves. Hydrobiologia 295:97–106

    Google Scholar 

  • Alias SA, Zianuddin N, Jones EBG (2010) Biodiversity of marine fungi in Malaysian mangroves. Bot Mar 53:545–554

    Google Scholar 

  • Al-Saadoon AH (2006) A new arenicolous species of Corollospora from Iraq. Marsh Bull 2:134–139

    Google Scholar 

  • Alva P, McKenzie EHC, Pointing SB, Pena-Muralla R, Hyde KD (2002) Do sea grasses harbour endophytes? Fungal Divers Res Ser 7:167–178

    Google Scholar 

  • Amend AS, Barshis DJ, Oliver TA (2012) Coral-associated marine fungi form novel lineages and heterogeneous assemblages. ISME J 6:1291–1301

    CAS  PubMed  Google Scholar 

  • Amend A, Burgaud G, Cunliffe M, Edgcom VP, Ettinger CL, Gutiérrez MH, Heitman J, Hom EFY, Ianiri G, Jones AC, Kagami M, Picard KT, Quandt CA, Raghukumar S, Riquelme M, Stajich J, Vargas-Muñiz J, Walker AK, Yarden O, Gladfelterp AS (2019) Fungi in the marine environment: open questions and unsolved problems. Ecol Evol Sci 10:e01189–18

    Google Scholar 

  • Am-In S, Limtong S, Yongmanichai W, Jindamorakot S (2011) Candida andamanensis sp. nov., Candida laemsonensis sp. nov. and Candida ranongensis sp. nov., anamorphic yeast species isolated from estuarine waters in a Thai mangrove forest. Int J Syst Evol Microbiol 61:454–461

    CAS  PubMed  Google Scholar 

  • Ananda K, Sridhar KR (2001) Mycoflora on dead animal materials of mangrove habitats of Karnataka Coast, India. Sri Lanka. J Aqua Sci 6:85–93

    Google Scholar 

  • Ananda K, Sridhar KR (2002) Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Can J Microbiol 48:871–878

    CAS  PubMed  Google Scholar 

  • Ananda K, Sridhar KR (2004) Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests of southwest coast of India. Curr Sci 87:1431–1437

    Google Scholar 

  • Ananda K, Prasannarai K, Sridhar KR (1998) Occurrence of higher marine fungi on marine animal substrates of some beaches along the west coast of India. Indian J Mar Sci 27:233–236

    Google Scholar 

  • Ananda K, Sridhar KR, Raviraja NS, Barlocher (2008) Breakdown of fresh and dried Rhizophora mucronata leaves in a mangrove of Southwest India. Wet Ecol Manage 16:1–9

    Google Scholar 

  • Araujo FV, Soares CAG, Hagler AN (1995) Ascomycetous yeast communities of marine invertebrates in a Southeast Brazilian mangrove ecosystem. Antonie Van Leeuwenhoek 68:91–99

    PubMed  Google Scholar 

  • Arfi Y, Buee M, Marchand C, Levasseur A, Record E (2012a) Multiple markers pyrosequencing reveals highly diverse and host-specific fungal communities on the mangrove trees Avicennia marina and Rhizophora stylosa. FEMS Microbiol Immunol 79:433–444

    Google Scholar 

  • Arfi Y, Marchand C, Wartel M, Record E (2012b) Fungal diversity in anoxic-sulfidic sediments in a mangrove soil. Fungal Ecol 5:282–285

    Google Scholar 

  • Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KWT, Dai DQ, Dai YC, Daranagama DA, Jayawardena RS, Lucking R, Ghobad-Nejhad M, Niskanen T, Thambugala KM, Voigt K, Zhao RL, Li GJ, Doilom M, Boonmee S, Yang ZL, Cai Q, Cui YY, Bahkali AH, Chen J, Cui BK, Chen JJ, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, Hashimoto A, Hongsanan S, Jones EBG, Larsson E, Li WJ, Li QR, Liu JK, Luo ZL, Maharachchikumbura SSN, Mapook A, McKenzie EHC, Norphanphoun C, Konta S, Pang KL, Perera RH, Phookamsak R, Phukhamsakda C, Pinruan U, Randrianjohany E, Singtripop C, Tanaka K, Tian CM, Tibpromma S, Abdel-Wahab MA, Wanasinghe DN, Wijayawardene NN, Zhang JF, Zhang H, Abdel-Aziz FA, Wedin M, Westberg M, Ammirati JF, Bulgakov TS, Lima DX, Callaghan TM, Callac P, Chang CH, Coca LF, Dal Forno M, Dollhofer V, Fliegerova K, Greiner K, Griffith GW, Ho HM, Hofstetter V, Jeewon R, Kang JC, Wen TC, Kirk PM, Kytovuori I, Lawrey JD, Xing J, Li H, Liu ZY, Liu XZ, Liimatainen K, Lumbsch HT, Matsumura M, Moncada B, Nuankaew S, Parnmen S, de Azevedo Santiago ALCM, Sommai S, Song Y, de Souza CAF, de Souza-Motta CM, Su HY, Suetrong S, Wang Y, Wei SF, Wen TC, Yuan HS, Zhou LW, Reblova M, Fournier J, Camporesi E, Luangsa-ard JJ, Tasanathai K, Khonsanit A, Thanakitpipattana D, Somrithipol S, Diederich P, Millanes AM, Common RS, Stadler M, Yan JY, Li XH, Lee HW, Nguyen TTT, Lee HB, Battistin E, Marsico O, Vizzini A, Vila J, Ercole E, Eberhardt U, Simonini G, Wen HA, Chen XH (2015) Fungal diversity notes 111–252 taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 75:1–248

    Google Scholar 

  • Besitulo AD, Samra VV, Hyde KD (2002) Mangrove fungi from Siargao Island, Philippines. In: Hyde KD (ed) Fungi in marine environments. Fungal Diversity Research Series 7. Fungal Divers Press, Hong Kong, pp 267–283

    Google Scholar 

  • Binder M, Hibbett DS, Wang Z, Farnham WF (2006) Evolutionary relationships of Mycaureola dilseae (Agaricales), a basidiomycetes pathogen of a subtidal Rhodophyte. Am J Bot 93:547–556

    PubMed  Google Scholar 

  • Bremer G (1995) Lower marine fugi (Labyrinthulomycetes) and the decay of mangrove leaf. Hydrobiologia 295:89–95

    Google Scholar 

  • Bucher VVC, Hyde KD, Pointing SB, Reddy CA (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Divers 15:1–14

    Google Scholar 

  • Byrne PJ, Jones EBG (1974) Lignicolous marine fungi. Veroff Inst Meeresf 5:301–320

    Google Scholar 

  • Byrne P, Jones EBG (1975) Effect of salinity on spore germination of terrestrial and marine fungi. Trans Bri mycol Soc 64:497–503

    Google Scholar 

  • Chalkley DB, Suh SO, Volkmann-Kohlmeyer B, Kohlmeyer J, Zhou JJ (2010) Diatrypasimilis australiensis, a novel xylarialean fungus from mangrove. Mycologia 102:432

    Google Scholar 

  • Chareprasert S, Piapukiew J, Whalley AJS, Sihanonth P (2010) Endophytic fungi from mangrove plant species of Thailand: their antimicrobial and anticancer potentials. Bot Mar 53:555–564

    Google Scholar 

  • Chen W, Shearer CA, Crane JL (1999) Phylogeny of Ophioceras spp. based on morphological and molecular data. Mycologia 91:84–94

    CAS  Google Scholar 

  • Chi WC, Chen WL, He CC, Guo SY, Cha HJ, Tsang LM, Ho TW, Pang KL (2019) A highly diverse fungal community associated with leaves of the mangrove plant Acanthus ilicifolius var xiamenensis revealed by isolation and metabarcoding analyses. Peer J. https://doi.org/10.7717/peerj.7293

    Article  PubMed  Google Scholar 

  • Chinnaraj S (1993) Manglicolous fungi from Atollos Maldives. Indian Ocean Ind J Mar Sci 22:14–142

    Google Scholar 

  • Cooke RC, Rayner ADM (1984) Ecology of saprophytic fungi. Longman, London

    Google Scholar 

  • Cribb AB, Cribb JW (1955) Marine fungi from Queensland. University of Queensland Press, Brisbane

    Google Scholar 

  • Cundell AM, Brown MS, Stanford R, Mitchell R (1979) Microbial degradation of Rhizophora mangle leaves immersed in the sea. East Coast Mar Sci 9:281–286

    CAS  Google Scholar 

  • Dayarathne MC, Phookamsak R, Hyde KD, Manawasinghe IS, To-Anun C, Jones EBG (2016) Halodiatrype, a novel diatrypaceous genus from mangroves with H. salinicola and H. avicenniae spp. nov. Mycosphere 4:363–454

    Google Scholar 

  • Dayarathne MC, Maharachchikumbura SSN, Jones EBG, Wei D, Devadatha B, Yang Jing, Ekanayake H, De Silva W, Samra VV, Al-Sadi AM, Khongphinitbunjong K, Hyde KD, Zhao RL (2019a) Phylogenetic revision of Savoryellaceae and evidence for its ranking as a subclass. Front Microbiol 10:84

    Google Scholar 

  • Dayarathne MC, Maharachchikumbura SSN, Jones EBG, Al-Sadi AM, Hyde KD, Chomnunti P (2019b) Sexual morph of Phaeoacremonium aureum from Rhizophora mucronata collected in southern Thailand. Phytotaxa 387:21–39

    Google Scholar 

  • Dayarathne MC, Devadatha B, Wanasinghe DN, Abeywickrama P, Jones EBG, Chomnunti P, Sarma VV, Liu JK, Hyde KD (2020a) Modern taxonomic approaches to identifiying Diatrypaceous fungi from marine habitats, a novel genus Halocryptovalsa and expansion of Halodiatrype. Cryptogamie Mycologie 41:21–67

    Google Scholar 

  • Dayarathne MC, Jones EBG, Maharachchikumbura SSN, Devadatha B, Sarma VV, Khongphinitbunjong K, Chomnunti P, Hyde KD (2020b) Morpho-molecular characterization of microfungi associated with marine based habitats. Mycosphere 11:1–188

    Google Scholar 

  • Debbab A, Aly AH, Proksch P (2013) Mangrove derived fungal endophytes – a chemical and biological perception. Fungal Divers 61:1–27

    Google Scholar 

  • Deshmukh SK, Gupta MK, Prakash V, Reddy MS (2018) Mangrove-associated fungi: a novel source of potential anticancer compounds. J Fungi 4:101

    CAS  Google Scholar 

  • Deshmukh SK, Agrawal S, Prakash V, Gupta MK, Reddy MS (2020) Anti-infectives from mangrove endophytic fungi. S Afr J Bot 16:1–27

    Google Scholar 

  • Devadatha B, Sarma VV (2018) Pontoporeia mangrovei sp. nov, a new marine fungus from an Indian mangrove along with a new geographical and host record of Falciformispora lignatilis. Curr Res Environ Appl Mycol 8:238–246

    Google Scholar 

  • Devadatha B, Sarma VV, Wanasinghe DN, Hyde KD, Jones EBG (2017) Introducing the new Indian mangrove species, Vaginatispora microarmatispora (Lophiostomataceae) based on morphology and multigene phylogenetic analysis. Phytotaxa 329:139–149

    Google Scholar 

  • Devadatha B, Sarma VV, Jeewon R, Wanasinghe DN et al (2018a) Thyridareilla a novel marine fungal genus from India: morphological characterization and phylogeny inferred from multigene DNA sequence analyses. Mycol Prog. https://doi.org/10.1007/s11557-018-1387-4

    Article  Google Scholar 

  • Devadatha B, Sarma VV, Ariyawansa HA, Jones EBG (2018b) Deniquelata vittalii sp. nov., a novel Indian saprobic marine fungus on Suaeda monoica and two new records of marine fungi from Muthupet mangroves, East coast of India. Mycosphere 9:565–582

    Google Scholar 

  • Devadatha B, Mehta N, Wanasinghe DN, Baghela A, Sarma VV (2019) Vittaliana mangrovei, gen. nov., sp. nov. (Phaeosphaeriaceae) from mangroves near Pondicherry (India), based on morphology and multigene phylogeny. Cryptogam Mycol 40:117–132

    Google Scholar 

  • El-Samawaty AMA, Boekhout T, Yassin MA, Abdel-Wahab MA (2019) Saturnispora mangrovi f.a., sp. nov. from Syhat mangrove, Saudi Arabia. Int J Syst Evol Microbiol 70:977–981

    Google Scholar 

  • El-Sharouny HM, Raheem AM, Abdel-Wahab MA (1998) Manglicolous fungi of the Red Sea in Upper Egypt. Mycol Res 153:81–96

    Google Scholar 

  • Fan KW, Vrijmoed LLP, Jones EBG (2002) Physiological studies of subtropical mangrove Thraustochytrids. Bot Mar 45:50–57

    Google Scholar 

  • FAO (2007) The world's mangroves 1980–2005. FAO forestry paper no. 153. Rome, Forest Resources Division, FAO, pp 77

  • Fell JW, Masters IM (1973) Fungi associated with the degradation of mangrove (Rhizophora mangle L.) leaves south Florida. In: Stevenson HL, Colwell RR (eds) Estuarine microbial ecology. University of South Carolina Press, Columbia

    Google Scholar 

  • Fell JW, Masters IM (1995) Phycomycete (Phytophthora spp. nov. and Pythium sp. nov.) associated with degrading mangrove leaves. Can J Bot 53:2908–2922

    Google Scholar 

  • Fell JW, Cefalu RC, Master IM, Tallman AS (1975) Microbial activities in the mangrove (Rhizophora mangle) leaf detrital system. In: Walsh G, Snedaker S, Teas H (eds) Proc Int Symp Biol Managmt Mangroves. University of Florida, Gainesville, pp 661–679

    Google Scholar 

  • Fell JW, Masters IM, Newell SY (1980) Laboratory model of’the potential role of fungi (Phytophthora spp.) in the decomposition of red mangrove (Rhizophora mangle) leaf litter. In: Tenore KR, Coull BC (eds) Marine Benthic dynamics. University of South Carolina Press, Columbia, pp 359–363

    Google Scholar 

  • Fell JW, Statzall-Tallman A, Kurtzman CP (2004) Lachancea meyersii sp. nov., an ascosporogenous yeast from mangrove regions in the Bahama Islands. Stud Mycol 50:359–363

    Google Scholar 

  • Fell JW, Statzell-Tallman S, Scorzetti G, Gutiérrez MH (2011) Five new species of yeasts from fresh water and marine habitats in the Florida Everglades. Anton Leeuw 99:533–549

    Google Scholar 

  • Field CD (1995) Impact of expected climate change on mangroves. Hydrobiologia 295:75–81

    Google Scholar 

  • Frisvad JC (2015) Fungal chemotaxonomy. In: Zeilinger S, Martín J-F, García-Estrada C (eds) Biosynthesis and molecular genetics of fungal secondary metabolites, vol 2. Springer, New York, pp 103–121

    Google Scholar 

  • Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240

    CAS  PubMed  Google Scholar 

  • Fryar SC, Booth W, Davies J, Hodgkiss IJ, Hyde KD (2004) Distribution of fungi on wood in the Tuton River, Brunei. Fungal Divers 17:17–38

    Google Scholar 

  • Fryar SC, Haelewaters D, Catcheside DEA (2019) Annabella australiensis gen. and sp. nov. (Helotiales, Cordieritidaceae) from South Australian mangroves. Mycol Prog 18:973–981

    Google Scholar 

  • Furtado BU, Gołebiewski M, Skorupa M, Hulisz P, Hrynkiewicz K (2019) Bacterial and fungal endophytic microbiomes of Salicornia europaea. Appl Environ Microbiol 85:e00305–e00319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garg GK (1983) Vertical distribution of fungi in Sunderban mangrove mud. Indian J Mar Sci 12:48–51

    Google Scholar 

  • Gleason FH, Küpper FC, Amon JP, Picard K et al (2011) Zoosporic fungi in marine ecosystems: a review. Mar Freshw Res 62:383–393

    CAS  Google Scholar 

  • Godinho VM, de Paula MT, Silva DA, Paresque K, Martins AP, Colepicolo P, Rosa CA, Rosa LH (2019) Diversity and distribution of hidden cultivable fungi associated with marine animals of Antarctica. Fungal Biol 123(7):507–516

    PubMed  Google Scholar 

  • Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235

    CAS  PubMed  Google Scholar 

  • Hassett BT, Vonnahme TR, Peng XF, Jones EBG, Heuzé C (2019) Global diversity and geography of the planktonic marine fungi. Bot Mar 63:121–139

    Google Scholar 

  • Hattori T, Sakayaroj J, Jones EBG, Suetrong S, Preedanon S, Klaysuban A (2014) Three species of Fulviformes (Basidiomycota, Hymenochaetales) associated with rots on mangrove tree Xylocarpus granatum in Thailand. Mycoscience 55:344–354

    Google Scholar 

  • Hawksworth DL, Eriksson OE (1986) The names of accepted orders of Ascomycetes. Syst Ascom 5:175–184

    Google Scholar 

  • Hibbett DS, Binder M (2001) Evolution of marine mushrooms. Biol Bull 201:319–322

    CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lucking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Day Y-C, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside IE, Koljalg U, Kurtzman CP, Larsson K-H, Lichtwardt R, Longcore J, Miądlikowska J, Miller A, Moncalvo J-M, Mozley-Standtridge S, Oberwinkler F, Parmasto E, Reeb W, Rogers J-D, Roux C, Ryvarden L, Sampaio JP, Schussler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao Y-J, Zhang N (2007) A higher- level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    PubMed  Google Scholar 

  • Hodhod MS, Abdel-Wahab MA, Bahkali AH, Hyde KD (2012) Amarenographium solium sp. nov. from Yanbu mangroves in the Kingdom of Saudi Arabia. Cryptogam Mycol 33:285–295

    Google Scholar 

  • Hongsanan S, Maharachchikumbura SSN, Hyde KD, Samarakoon MC et al (2017) An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers 84:25–41

    Google Scholar 

  • Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, McKenzie EHC, Sarma VV, Boonmee S, Lücking R, Pem D, Bhat JD, Liu N, Tennakoon DS, Karunarathna A, Jiang SH, Jones EBG, Phillips AJL, Manawasinghe I, Tibpromma S, Jayasiri SC, Sandamali D, Jayawardena RS, Wijayawardene NN, Ekanayaka AH, Jeewon R, Lu YZ, Dissanayake AJ, Zeng XY, Luo ZL, Tian Q, Phukhamsakda C, Thambugala KM, Dai DQ, Chethana TKW, Ertz D, Doilom M, Liu JK, Pérez-Ortega S, Suija A, Senwanna C, Wijesinghe SN, Konta S, Niranjan M, Zhang SN, Ariyawansa HA, Jiang HB, Zhang JF, de Silva NI, Thiyagaraja V, Zhang H, Bezerra JDP, Miranda-Gonzáles R, Aptroot A, Kashiwadani H, Harishchandra D, Aluthmuhandiram JVS, Abeywickrama PD, Bao DF, Devadatha B, Wu HX, Moon KH, Gueidan C, Schumm F, Bundhun D, Mapook A, Monkai J, Chomnunti P, Samarakoon MC, Suetrong S, Chaiwan N, Dayarathne MC, Jing Y, Rathnayaka AR, Bhunjun CS, Xu JC, Zheng JS, Liu G, Feng Y, Xie N (2020a) Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11(1):1553–2107

    Google Scholar 

  • Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, McKenzie EHC, Sarma VV, Lücking R, Boonmee S, Bhat JD, Liu N, Tennakoon DS, Pem D, Karunarathna A, Jiang SH, Jones EBG, Phillips AJL, Manawasinghe I, Tibpromma S, Jayasiri SC, Sandamali D, Jayawardena RS, Wijayawardene NN, Ekanayaka AH, Jeewon R, Lu YZ, Dissanayake AJ, Zeng XY, Luo ZL, Tian Q, Phukhamsakda C, Thambugala KM, Dai DQ, Chethana TKW, Ertz D, Doilom M, Liu JK, Pérez-Ortega S, Suija A, Senwanna C, Wijesinghe SN, Konta S, Niranjan M, Zhang SN, Ariyawansa HA, Jiang HB, Zhang JF, de Silva NI, Thiyagaraja V, Zhang H, Bezerra JDP, Miranda-Gonzáles R, Aptroot A, Kashiwadani H, Harishchandra D, Aluthmuhandiram JVS, Abeywickrama PD, Bao DF, Devadatha B, Wu HX, Moon KH, Gueidan C, Schumm F, Bundhun D, Mapook A, Monkai J, Chomnunti P, Samarakoon MC, Suetrong S, Chaiwan N, Dayarathne MC, Jing Y, Rathnayaka AR, Bhunjun CS, Xu JC, Zheng JS, Liu G, Feng Y, Xie N (2020b) Refined families of Dothideomycetes: orders and families incertae sedis in Dothideomycetes. Fungal Divers 105:17–318

    Google Scholar 

  • Hyde KD (1986) Frequency of occurrence of lignicolous marine fungi in the tropics. In: Moss ST (ed) The biology of marine fungi. Cambridge Univeristy Press, Cambridge, pp 311–322

    Google Scholar 

  • Hyde KD (1988) Studies on the tropical marine fungi of Brunei. Bot J Linn Soc 98:135–151

    Google Scholar 

  • Hyde KD (1990a) Intertidal fungi from warm temperate mangroves of Australia, including Tunicatispora australiensis, gen. et sp. nov. Aust Syst Bot 3:711–718

    Google Scholar 

  • Hyde KD (1990b) A study of the vertical zonation of intertidal fungi on Rhizophora apiculata at Kampong Kapok mangrove, Brunei. Aquatic Bot 36:255–262

    Google Scholar 

  • Hyde KD (1991) Fungal colonization of Rhizophora apiculata and Xylocarpus granatum poles in Kampong Kapok mangrove, Brunei. Sydowia 43:31–38

    Google Scholar 

  • Hyde KD, Alias SA (2000) Biodiversity and distribution of fungi associated with decomposing Nypa fruticans. Biol Cons 9:393–402

    Google Scholar 

  • Hyde KD, Jones EBG (1986) Marine fungi from Seychelles. IV. Cucullospora mangrovei gen. et sp. nov. from dead mangrove. Bot Mar 29:491–495

    Google Scholar 

  • Hyde KD, Jones EBG (1988) Marine mangrove fungi. Mar Ecol 9:15–38

    Google Scholar 

  • Hyde KD, Jones EBG (1989) Marine fungi from Seychelles. VIII. Rhizophila marina, a new ascomycete from mangrove prop roots. Mycotaxon 34:527–533

    Google Scholar 

  • Hyde KD, Lee SY (1995) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295:107–118

    Google Scholar 

  • Hyde KD, Sarma VV (2006) Biodiversity and ecological observations on filamentous fungi of mangrove palm Nypa fruticans Wurumb (Liliopsida-Arecales) along the Tutong River, Brunei. Indian J Mar Sci 35:297–307

    Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Hyde KD, Chalermpongse A, Boonthavikoon T (1990) Ecology of intertidal fungi at Ranong mangrove, Thailand. Trans Mycol Soc Jpn 31:17–27

    Google Scholar 

  • Hyde KD, Jones EBG, Leaño E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Google Scholar 

  • Hyde KD, Goh TK, Lu BS, Alias SA (1999) Eleven new intertidal fungi from Nypa fruticans. Mycol Res 103:1409–1422

    Google Scholar 

  • Hyde KD, Jones EBG, Ariyawansa H, Liu JK, Binder M, Jayawardene N, Boehm E, Boonmee S, Chomnunti P, Dai DQ, Doilom M, Lücking R, Monkai J, Nelsen MP, Phookamsak R, Shearer CA, Wu ZH, Diederich P, Lawrey JD, Suetrong S, Tanaka K, Gueidan C, Knudsen K, Muggia L, Braun U, Yacharoen S, Wikee S, Li YM, Aptroot A, Bezerra JL, Raja HA, Alias SA, Bhat JD, Chukeatirote E, Dissanayake A, Doveri F, Crous PW, De Hoog S, Jayawardena R, Pang KL, Zhang Y, Hirayama K, Miller A (2013) Families of Dothideomycetes. Fungal Divers 63:1–313

    Google Scholar 

  • Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, Chaiwan N, Chethana KWT, Dai DQ, Dayarathne MC, Devadatha B, Dissanayake AJ, Dissanayake LS, Doilom M, Dong W, Fan XL, Goonasekara ID, Hongsanan S, Huang SK, Jayawardena RS, Jeewon R, Karunarathna A, Konta S, Kumar V, Lin CG, Liu JK, Liu NG, Luangsa-ard J, Lumyong S, Luo ZL, Marasinghe DS, McKenzie EHC, Niego AGT, Niranjan M, Perera RH, Phukhamsakda C, Rathnayaka AR, Samarakoon MC, Samarakoon SMBC, Sarma VV, Senanayake IC, Shang QJ, Stadler M, Tibpromma S, Wanasinghe DN, Wei DP, Wijayawardene NN, Xiao YP, Yang J, Zeng XY, Zhang SN, Xiang MM (2020) Refined families of Sordariomycetes. Mycosphere 11:305–1059

    Google Scholar 

  • Isaka M, Yngchum A, Intamas S, Kocharin K, Jones EBG, Kongsaree P, Prabpai S (2009) Aigialomycins and related polyketide metabolites from the mangrove fungus Aigialus parvus BCC 5311. Tetrahedron 65:4396–4403

    CAS  Google Scholar 

  • Jayasiri SC, Hyde KD, Jones EBG, McKenzie EHC, Jeewon R, Phillips AJL, Bhat DJ, Wanasinghe DN, Liu JK, Lu YZ, Kang JC, Xu JC, Karunarathna SC (2019) Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 10(1):1–186

    Google Scholar 

  • Jones EBG (1963) Marine fungi 2. Ascomycetes and Deuteromycetes from submerged wood and drift Spartina. Trans Br Mycol Soc 46:135–144

    Google Scholar 

  • Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73

    Google Scholar 

  • Jones EBG (2011) Are there more marine fungi to be described? Bot Mar 54:343–354

    Google Scholar 

  • Jones EBG, Abdel-Wahab MA (2005) Marine fungi from the Bahamas Islands. Bot Mar 48:356–364

    Google Scholar 

  • Jones EBG, Hyde KD (1988) Methods for the study of marine fungi from the mangroves. In: Agate AD, Subramanian CV, Vannucci M (eds) Mangrove microbiology. Role of microorganisms in nutrient cycling of mangrove soils and waters. UNDP/UNESCO, New Delhi, pp 9–27

    Google Scholar 

  • Jones EBG, Oliver AC (1964) Occurrence of aquatic hyphomycetes on wood submerged in fresh and brackish water. Trans Br mycol Soc 47:45–48

    Google Scholar 

  • Jones EBG, Puglisi MP (2006) Marine fungi from Florida. Florida Sci 69:157–164

    Google Scholar 

  • Jones EBG, Hyde KD, Read SJ, Moss ST, Alias SA (1996) Tirisporella gen. nov., an ascomycete from the mangrove palm Nypa fruticans. Can J Bot 74:1487–1495

    Google Scholar 

  • Jones EBG, Sakayaroj J, Sueterong S, Somrithipol A, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72

    Google Scholar 

  • Jones EBG, Devadatha B, Abdel-Wahab MA, Dayarathne MC, Zhang SN, Hyde KD, Liu JK, Bahkali AH, Samra VV, Zhang H, Wang MM, Liu F, Cai L (2019a) New marine fungal genera and species. Bot Mar 63:155–181

    Google Scholar 

  • Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AH, Gleason F, Norphanphoun C (2019b) An online resource for marine fungi. Fungal Divers 96:347–433

    Google Scholar 

  • Jülich W (1981) Higher taxa of Basidiomycetes. Bibliotheca Mycologica 85:1–485

    Google Scholar 

  • Kohlmeyer J (1969) Marine fungi from Hawaii including the new genus Helicascus. Can J Bot 47:1469–1487

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1989) Hawaiian marine fungi, including two new genera of Ascomycotina. Mycol Res 92:410–421

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Marine fungi from Queensland, Australia. Aust J Mar Freshw Res 42:91–99

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1992) Two Ascomycotina from coral reefs in the Caribbean and Australia. Cryptogam Bot 2:367–374

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2003) Marine ascomycetes from algae and animal hosts. Bot Mar 46:285–306

    Google Scholar 

  • Kong RYC, Chan PC, Mitchell JI, Vrijmoed LLP, Jones EBG (2000) Relationships of Halosarpheia, Lignincola and Nais inferred from partial 18S rDNA. Mycol Res 104:35–43

    CAS  Google Scholar 

  • Kuthubutheen AJ (1984) Leaf surface fungi associated with Avicennia alba and Rhizophora mucronata in Malaysia. In: Proceedingd of the Asian symposium on mangrove environment - research and management, Kuala Lumpur pp 153–171

  • Læssøe T, Davey ML, Petersen JH (2016) A new species of Maireina on Filipendula ulmaria. Karstenia 56:39–46

    Google Scholar 

  • Leańo EM, Vrijmoed LLP, Jones EBG (1998) Physiological studies on Halophytophthora vesicular (Straminipilous Fungi) isolated from fallen mangroves leaves from Mai Po, Hong Kong. Bot Mar 41:411–419

    Google Scholar 

  • Lee BKH, Baker GE (1973) Fungi associated with the roots of the red mangrove. Mycologia 656:894–906

    Google Scholar 

  • Lee SY, Jones EBG, Diele K, Castellanos-Galindo GA, Nordhaus I (2017) Biodiversity. In: Rivera-Monry Lee (ed) Mangrove ecosystems: a global biogeographic perspective. Springer, New York, pp 55–84

    Google Scholar 

  • Leong WF, Tan TK, Jones EBG (1988) Lignicolous marine fungi of Singapore. Can J Bot 66:2167–2170

    Google Scholar 

  • Leong WF, Tan TK, Jones EBG (1991) Fungal colonization of submerged Bruguiera cylindrica and Rhizophora apiculata wood. Bot Mar 34:69–76

    Google Scholar 

  • Li GJ, Hyde KD, Zhao RN, Hongsanan S, Abdel-Aziz FA, Abdel-Wahab MA, Alvarado P, Alves-Silva G, Ammirati JF, Ariyawansa HA, Baghela A, Bahkali AH, Beug M, Bhat DJ, Bojantchev D, Boonpratuang T, Bulgakov TS, Camporesi E, Boro MC, Ceska O, Chakraborty D, Chen JJ, Chethana KWT, Chomnunti P, Consiglio G, Cui BK, Dai DQ, Dai YC, Daranagama DA, Das K, Dayarathne MC, Crop ED, De Oliveira RJV, de Souza CAF, de Souza JI, Dentinger BTM, Dissanayake AJ, Doilom M, Drechsler-Santos ER, Ghobad-Nejhad M, Gilmore SP, Goes-Neto A, Gorczak M, Haitjema GH, Hapuarachchi KK, Hashimoto A, He MQ, Henske JK, Hirayama K, Iribarren MJ, Jayasiri SC, Jayawardena RS, Jeon SJ, Jeronimo GH, Jesus AL, Jones EBG, Kang JC, Karunarathna SC, Kirk PM, Konta S, Kuhnert E, Langer E, Lee HS, Lee HB, Li WJ, Li XH, Liimatainen K, Lima DX, Lin CG, Liu JK, Liu XZ, Liu ZY, Luangsa-ard JJ, Lucking R, Lumbsch HT, Lumyong S, Leano EM, Marano AV, Matsumura M, McKenzie EHC, Mongkolsamrit S, Mortimer PE, Nguyen TTT, Niskanen T, Norphanphoun C, O’Malley MA, Parnmen S, Pawłowska J, Perera RH, Phookamsak R, Phukhamsakda C, Pires-Zottarelli CLA, Raspe O, Reck MA, Rocha SCO, de Santiago ALCMA, Senanayake IC, Setti L, Shang QJ, Singh SK, Sir EB, Solomon KV, Song J, Srikitikulchai P, Stadler M, Suetrong S, Takahashi H, Takahashi T, Tanaka K, Tang LP, Thambugala KM, Thanakitpipattana D, Theodorou MK, Thongbai B, Thummarukcharoen T, Tian Q, Tibpromma S, Verbeken A, Vizzini A, Vlasak J, Voigt K, Wanasinghe DN, Wang Y, Weerakoon G, Wen HA, Wen TC, Wijayawardene NN, Wongkanoun S, Wrzosek M, Xiao YP, Xu JC, Yan JY, Yang J, Yang SD, Hu Y, Zhang JF, Zhao J, Zhou LW, Persoh D, Phillips AJL, Maharachchikumbura SSN (2016) Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 78:1–237

    CAS  Google Scholar 

  • Li J, Jeewon R, Phookamsak R, Bhat DJ, Mapook A, Chukeatirote E, Hyde KD, Lumyong S, Mckenzie EH (2018) Marinophialophora garethjonesii gen. et sp. nov.: a new hyphomycete associated with Halocyphina from marine habitats in Thailand. Phytotaxa 345(1):1–2

    Google Scholar 

  • Limtong S, Kaewwichian R, Am-In S, Boonmark C, Jindamorakot S, Yongmanitchai W, Srisuk N, Kawasaki H, Nakase T (2010) Three anamorphic yeast species Candida sanitii sp. nov., Candida sekii sp. nov., and Candida suwanaritii, three novel yeasts in the Saturispora clade isolated in Thailand. FEMS Yeast Res 10:114–122

    CAS  PubMed  Google Scholar 

  • Lin YC, Wu XY, Fenf SA, Jiang GC, Luo JH, Zhou SN, Vrijmoed LLP, Jones EBG, Krohn K, Steingrover K, Zsila F (2001) Five unique compounds: Xyloketals from mangrove fungus Xylaria sp. from the South China Sea. J Organic Chem 66:6252–6256

    CAS  Google Scholar 

  • Lin YC, Wu X, Deng Z, Wang J, Zhou S, Vrijmoed LLP, Jones EBG (2002a) The metabolites of the mangrove fungus Verruculina enalia No 2606 from a salt lake in the Bahamas. Phytochem 59:469–471

    CAS  Google Scholar 

  • Lin YC, Wang J, Wu XY, Zhou SN, Vrijmoed LLP, Jones EBG (2002b) A novel compound eniatin G from the mangrove fungus Halosarpheia sp. ( #732) from the South China Sea. Aust J Chem 55:225–227

    CAS  Google Scholar 

  • Liu JK, Hyde KD, Gareth Jones EB, Ariyawansa HA, Bhat DJ, Boonmee S, Maharachchikumbura SSN, McKenzie EHC, Phookamsak R, Phukhamsakda C, Shenoy BD, Abdel-Wahab MA, Buyck B, Chen J, Chethana KWT, Singtripop C, Dai DQ, Dai YC, Daranagama DA, Dissanayake AJ, Doilom M, Dsouza MJ, Fan XL, Goonasekara ID, Hirayama K, Hongsanan S, Jayasiri SC, Jayawardena RS, Karunarathna SC, Li WJ, Mapook A, Norphanphoun C, Pang KL, Perera RH, Peršoh D, Pinruan U, Senanayake IC, Somrithipol S, Suetrong S, Tanaka K, Thambugala KM, Tian Q, Tibpromma S, Udayanga D, Wijayawardene NN, Wanasinghe DN, Wisitrassameewong K, Zeng XY, Abdel-Aziz FA, Adamčik S, Bahkali AH, Boonyuen N, Bulgakov T, Callac P, Chomnunti P, Greiner K, Hashimoto A, Hofstetter V, Kang JC, Lewis D, Li XH, Liu XZ, Liu ZY, Matsumura M, Mortimer PE, Rambold G, Randrianjohany E, Sato G, Sri-Indrasutdhi V, Tian CM, Verbeken A, von Brackel W, Wang Y, Wen TC, Xu JC, Yan JY, Zhao RL, Camporesi E (2015) Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Divers 72:1–197

    CAS  Google Scholar 

  • Liu JK, Hyde KD, Jeewon R, Phillips AJ, Maharachchikumbura SS, Ryberg M, Liu ZY, Zhao Q (2017) Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Divers 84:75–99

    Google Scholar 

  • Logesh AR, Kalaiselvam M, Upreti DK, Nayaka S, Kathiresan K (2013) Mangroves – An abode for unique lichens Coastal ecosystems of India, special publication. Annamalai University, Parangipettai, pp 39–44

    Google Scholar 

  • Loilong A, Salayaroj J, Ringjindamain Choeyklin R, Jones EBG (2012) Biodiversity of fungi on the palm Nypa fruticans. In: Jones EBG, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 273–290

    Google Scholar 

  • Maekawa N, Suhara H, Kinjo K, Kondo R, Hoshi Y (2005) Haloaleurodiscus mangrovei gen. sp. nov. (Basidiomycota) from mangrove forests in Japan. Mycol Res 109:825–832

    PubMed  Google Scholar 

  • Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Bhat J, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, Shang Q, Xiao Y, Dsouza MJ, Hongsanan S, Jayawardena RS, Daranagama DA, Konta S, Goonasekara ID, Zhuang WY, Jeewon R, Phillips AJL, Abdel-Wahab MA, Al-Sadi AM, Bahkali A, Boonmee S, Boonyuen N, Cheewangkoon R, Disanayake AJ, Kang J, Li QR, Liu JK, Liu ZY, Pang KL, Phookamsak R, Promputtha I, Suetrong S, Wen TC, Wijayawardene NN (2016) Families of Sordariomycetes. Fungal Divers 72:199–301

    Google Scholar 

  • Maldonado-Ramírez SL, Torres-Pratts H (2005) First report of Clathrus cf crispus (Basidiomycota: Clathraceae) occurring on decomposing leaves of Rhizophora mangle in Puerto Rico. Caribbean J Sci 41:357–359

    Google Scholar 

  • Manimohan P, Amritha M, Sairabanu NK (2011) A comparison of diversity of marine fungi on three co-habiting mangrove plants. Mycosphere 2:533–538

    Google Scholar 

  • Maria GL, Sridhar KR (2003) Endophytic fungal assemblage of two halophytes from west coast mangrove habitats, India. Czech Mycol 55:241–251

    Google Scholar 

  • Meyers SP, Reynolds ES (1958) A wood incubation method for the study of lignicolous marine fungi. Bull Mar Sci Gulf Caribbean 8:342–347

    Google Scholar 

  • Misra S, Vijaykumar Y, Amitabha G, Dutta J (1984) Microbial decomposition of Aviccenia officinalis leaf litter in a mangrove forest biome: biochemical changes during decomposition. In: Krshnamurthy V, Untawale AH (eds) Marine plants. Seaweed Research Utilization Association, Madras, pp 257–262

    Google Scholar 

  • Nakagiri A, Tokumasu S, Araki H, Koreeda S, Tubaki K (1989) Succession of fungi in decomposing mangrove leaves in Japan. In: Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A (eds) Recent advances in microbial ecology (proceeding of the 5th international symposium on microbial ecology). Japan Scientific Societies Press, Tokyo, pp 297–301

    Google Scholar 

  • Nakagiri A, Okane I, Ito T, Katumoto K (1997) Lanceispora amphibia gen. et sp. nov., a new amphisphaericeous ascomycete inhabiting senescent and fallen leaves of mangrove. Mycoscience 38:207–213

    Google Scholar 

  • Narayanasamy R, Kathiresan K (2007) Microbial flora associated with submerged leaf litter in India. Rev Biol Tropl 55:34–44

    Google Scholar 

  • Nayak SS, Gonsalves V, Nazareth S (2011) Isolation and salt tolerance of halophilic fungi from mangroves and solar salterns - India. Indian J Geo-Mar Sci 41:164–172

    Google Scholar 

  • Newell SY (1973) Succession and role of fungi in the degradation of red mangrove seedlings. In: Stevenson LH, Colwell RR (eds) Estuarine microbial ecology. Univ. of South Carolina Press, Columbia, pp 467–480

    Google Scholar 

  • Newell SY (1976) mangrove fungi: the succession in mycoflora of red mangrove (Rhizophoara mangle L.) seedlings. In: Jones EBG (ed) Recent advances in aquatic mycology. Elsevier, London, pp 51–91

    Google Scholar 

  • Overy DP, Rämä T, Oosterhuis R, Walker A, Pang KL (2019) The neglected marine fungi sensu stricto and their isolation for natural products discovery. Marine Drugs 17:42

    CAS  PubMed Central  Google Scholar 

  • Pang KL, Vrijmoed LLP, Goh TK, Plaingam N, Jones EBG (2008) Fungal endophytes associated with Kandelia candel (Rhizophoraceae) in Mai Po Nature Reserve, Hong Kong. Bot Mar 51:171–178

    Google Scholar 

  • Pang KL, Jheng JS, Jones EBG (2011) Marine mangrove fungi of Taiwan. National Taiwan Ocean University, Chilung, pp 1–131

    Google Scholar 

  • Pang KL, Hyde KD, Alias SA, Suetrong S, Guo SY, Idid R, Jones EBG (2013) Dyfrolomycetaceae, a new family in the Dothideomycetes, Ascomycota. Cryptogam Mycol 34:223–232

    Google Scholar 

  • Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei DP, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li JF, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo ZL, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu JC (2019) Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers 95:1–273

    Google Scholar 

  • Pointing SB, Vrijmoed LLP, Jones EBG (1998) A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot Mar 41:293–298

    CAS  Google Scholar 

  • Pointing SB, Buswell JA, Jones EBG, Vrijmoed LLP (1999) Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi. Mycol Res 103:696–700

    Google Scholar 

  • Poon MOK, Hyde KD (1998) Biodiversity of intertidal estuarine fungi on Phragmites at Mai Po marshes, Hong Kong. Bot Mar 41:141–155

    Google Scholar 

  • Poonyth AD, Hyde KD, Peerally A (2001) Colonization of Bruguiera gymnorrhiza and Rhizophora mucronata wood by marine fungi. Bot Mar 44:75–80

    Google Scholar 

  • Pouska V, Svoboda M, Leps J (2013) Co-occurrence patterns of wood-decaying fungi on Picea abies log: does Fomitopsis pinicola influence the other species? Polish J Ecol 61:119–134

    Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Raghukumar S (2017) Fungi in coastaland oceanic marine ecosytems. Springer, New York, pp 1–364

    Google Scholar 

  • Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of them mangrove Rhizophora apiculata Blume. J Exp Mar Biol Ecol 183:113–131

    Google Scholar 

  • Raghukumar S, Sathe-Pathak V, Sharma S, Raghukumar C (1995) Thraustochytrid and fungal component of marine detritus. III. Field studies on the decomposition of leaves of the mangrove Rhizophora apiculata Blume. Aquat Microbiol Ecol 9:117–125

    Google Scholar 

  • Rai JN, Tewari JP, Mukerji KG (1969) Mycoflora of mangrove mud. Mycopathol Mycol Appl 38:17–31

    Google Scholar 

  • Raja AR, Upreti DK, Kalaiselvam M, Nayaka S, Kandasamy K (2012) Lichen flora of Pichavaram and Muthupet mangroves (Southeast Coast of India). Mycosphere 3:884–888

    Google Scholar 

  • Rashmi M, Kushveer JS, Sarma VV (2019) A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10:798–1079

    Google Scholar 

  • Raveendran R, Manimohan P (2007) Marine fungi of Kerala, A preliminary floristic and ecological study. Malabar Natural History Society (MNHS), 17/548, Indira Gandhi Link Road, Calicut - 673 004, Kerala, India

  • Ravikumar DR, Vittal BPR (1996) Fungal diversity on decomposing biomass of mangrove plant Rhizophora in Pichavaram estuary, east coast of India. Indian J Mar Sci 25:142–144

    Google Scholar 

  • Réblová M, Miller AN, Rossman AY, Seifert KS, Crous PW, Hawksworth DL, Abdel-Wahab MA, Cannon PF, Daranagama DA, De Beer ZW, Huang SK, Hyde KD, Jayawardena R, Jaklitsch W, Jones EBG, Ju YM, Judith C, Maharachchikumbura SSN, Pang KL, Petrini LE, Raja HA, Romero AI, Shearer CA, Senanayake IC, Voglmayr H, Weir BS, Wijayawarden NN (2016) Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales). IMA Fungus 7:131–153

    PubMed  PubMed Central  Google Scholar 

  • Richards TA, Jones MD, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Google Scholar 

  • Rukachaisirikul V, Rodglin A, Phongpaichit S, Buatong J, Sakayaroj J (2011) alpha Pyrone and seiricuprolide derivatives from the mangrove-derived fungi Pestalotiopsis spp. PSU-MA92 and PSU-MA 119. Phytochem Lett 5:13–17

    Google Scholar 

  • Sadaba RB, Vrijmoed LLP, Jones EBG, Hodkiss IJ (1995) Observations on vertical distribution of fungi associated with standing senescent Acanthus ilicifolius stems at Mai Po mangrove, Hong Kong. Hydrobiology 295:119–126

    Google Scholar 

  • Sainty GR, Hosking J, Carr G, Adan P (eds) (2012) Estuary plants and what’s happening to them in south-east Australia. Sainty and Associates Pty Ltd., Australia

    Google Scholar 

  • Sakayaro J, Preedanon S, Phongpaichit S, Buatong J, Chaowalit P, Rukachaisirikul A (2012) Diversity of endophytic and marine-derived fungi associated with marine plants and animals. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. De Gryter, Berlin, pp 291–328

    Google Scholar 

  • Sakayaroj J, Pang KL, Phongpaichi S, Jones EBG (2005) A phylogenetic study of the genus Haligena (Halosphaeriales, Ascomycota). Mycologia 97:804–811

    CAS  PubMed  Google Scholar 

  • Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with tropical seagrass Enhalus acoroides from Thailand. Fungal Divers 41:27–45

    Google Scholar 

  • Sakayaroj J, Preedanon S, Suetrong S, Klaysuban A et al (2012) Molecular characterization of basidiomycetes associated with the decayed mangrove tree Xylocarpus granatum in Thailand. Fungal Divers 56:145–156

    Google Scholar 

  • Sangtiean T, Suetrong S, Sakayaroj J, Unakul P, Preedanon S, Klaysuban A (2014) Species diversity of manglicolous marine fungi at Trat Province. The Agricultural Co-operative Federation of Thailand Limited, Bangkok, pp 1–86

    Google Scholar 

  • Sarma VV, Hyde KD (2001) A review of frequently occurring fungi in mangroves. Fungal Divers 8:1–34

    Google Scholar 

  • Sarma VV, Hyde KD (2018) Fungal species consortia on Nypa fruticans at Brunei. Stud Fungi 3:19–26

    Google Scholar 

  • Sarma VV, Raghukumar S (2013) Manglicolous fungi from Chorao mangroves, Goa, West coast of India: observations on fungal species consortia. Kavaka 41:18–22

    Google Scholar 

  • Sarma VV, Vittal BPR (1998–1999) Ecological studies on mangrove fungi from east coast of India. Observations on seasonal occurrence. Kavaka: 26 & 27:105–120

  • Sarma VV, Vittal BPR (2000) Biodiversity of mangrove fungi on different substrata of Rhizophora apiculata and Avicennia spp. from Godavari and Krishna deltan, east cost of India. In: Hyde, K.D., Ho, W.H. and Pointing, S.B. (eds.) Aquatic Mycology across the Millennium. Fungal Divers 5:23–41

    Google Scholar 

  • Sarma VV, Vittal BPR (2002) A preliminary study on vertical distribution of manglicolous fungi on prop roots of Rhizophora apiculata Blume at Krishna delta, east coast of India. Kavaka 30:21–29

    Google Scholar 

  • Sarma VV, Vittal BPR (2017) Seasonal occurrence of marine ascomycetes and anamorphic marine fungi in mangroves of Godavari and Krishna deltas, East coast of India. Kavaka 48:61–69

    Google Scholar 

  • Sarma VV, Newell SY, Hyde KD (2001) Koorchaloma spartinicola sp. nov., a new marine sporodochial fungus from Spartina alterniflora. Bot Mar 44:321–326

    Google Scholar 

  • Schmit JP, Shearer CA (2003) A checklist of mangrove occurring fungi, their geographical distribution and known host plants. Mycotaxon 85:432–477

    Google Scholar 

  • Schmit JP, Shearer CA (2004) Geographic and host distribution of lignicolous mangrove micro-fungi. Bot Mar 47:496–500

    Google Scholar 

  • Scholz B, Kupper FC, Vyverman W, Karsten U (2016) Effects of eukaryotic pathogens (Chytridiomycota and Oomycota) on marine microphytobenthic diatom community compositions in the Soltho¨rn tidal flat (southern North Sea, Germany). Eur J Phycol 5:253–269

    Google Scholar 

  • Shearer CA (1972) Fungi of the Chesapeake Bay and its tributaries. III. The distribution of wood-inhabiting ascomycetes and fungi imperfecti of the Patuxent river. Am J Bot 59:961–969

    Google Scholar 

  • Simões MF, Antunes A, Ottoni CA, Amini MS, Alam I, Alzubaidy H, Mokhtar NA, Archer JAC, Bajic VB (2015) Soil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the Red Sea—a metagenomic approach. Genomics Proteomics Bioinform 13:310–320

    Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) Word atlas of mangroves. Earthscan, London

    Google Scholar 

  • Spatafora JW, Blackwell M (1994) The polyphyletic origins of ophiostomatoid fungi. Mycol Res 98:1–9

    Google Scholar 

  • Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1998

    CAS  PubMed  Google Scholar 

  • Sridhar KR (2012) Decomposition of materials in the sea. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin, pp 475–500

    Google Scholar 

  • Sridhar KR, Alias SA, Pang KL (2012) Mangrove fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin, pp 253–271

    Google Scholar 

  • Statzell-Tallman A, Belloch C, Fell JW (2008) Kwoniella mangroviensis gen. nov., sp. nov. (Tremellales, Basidiomycota), a teleomorphic yeast from mangrove habitats in the Florida Everglades and Bahamas. FEMS Yeast Res 8:103–113

    CAS  PubMed  Google Scholar 

  • Statzell-Tallman A, Scorzetti G, Fell JW (2010) Candida spencermartinsiae sp. nov., Candida taylorii sp. nov. and Pseudozyma abaconensis sp. nov., novel yeasts from mangrove and coral reef ecosystems. Inter J Syst Evol Microb 60:1978–1984

    CAS  Google Scholar 

  • Steinke TD, Barnabas AD, Somaru R (1990) Structural changes and associated microbial activity accompanying decomposition of mangrove leaves in Mgeni Estuary. S Afr J Bot 56:39–48

    Google Scholar 

  • Stevens FL (1920) New or noteworthy Porto Rican fungi. Bot Gaz 70:399–402

    Google Scholar 

  • Stevens GN (1979) Distribution and related ecology of macrolichens on mangroves on the east Australian coast. Lichenologist 11:293–305

    Google Scholar 

  • Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkman-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suetrong S, Sakayaroj J, Unakul P, Somrithipol S, Preedanon S, Gundool W, Klaysuban A, Sangtiean T, Promchu W (2016) Species diversity of manglicolous marine fungi at Nakhon Si Thammarat, Phetchaburi and Prachuap Khiri Khan Provinces. The Agricultural Co-operative Federation of Thailand Limited, Bangkok

    Google Scholar 

  • Sun JZ, Liu XZ, McKenzie EHC, Jeewon R, Liu JK, Zhang XL, Zhao Q, Hyde KD (2019) Fungicolous fungi: terminology, diversity, distribution, evolution and species checklist. Fungal Divers 95:1–94

    Google Scholar 

  • Supaphon P, Phongpaichit S, Sakayaroj J, Rukachaisirikul V, Kobmoo N, Spatafora JW (2017) Phylogenetic community structure of fungal endophytes in seagrass species. Bot Mar 60:489–502

    CAS  Google Scholar 

  • Tam WY, Pang KL, Jones EBG (2003) Ordinal placement of selected marine Dothideomycetes inferred from small subunit ribosomal DNA sequence analysis. Bot Mar 46:487–494

    CAS  Google Scholar 

  • Tan TK, Leong WF, Jones EBG (1989a) Succession of fungi on wood of Avicennia alba and A. lanata in Singapore. Can J Bot 67:2686–2691

    Google Scholar 

  • Tan TK, Leong WF, Mouzouras R, Jones EBG (1989b) Occurrence of fungi on mangrove wood and its decomposition. In: Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A (eds) Recent advances in microbial ecology. Japan Scientific Societies Press, Tokyo, pp 307–310

    Google Scholar 

  • Tan TK, Teng CL, Jones EBG (1995) Substrate type and microbial interactiona as factors affecting ascocarp formation by mangrove fungi. Hydrobiologia 195:127–134

    Google Scholar 

  • Tang AMC, Jeewon R, Hyde KD (2007) Phylogenetic utility of protein (RPB2, b-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematic of Sordariomycetes (Ascomycota, Fungi). Antonie Van Leeuwenhoek 91:327–349

    CAS  PubMed  Google Scholar 

  • Tao YW, Lin YC, She ZG, Lin MT, Chen PX, Zhang JY (2015) Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi. Anti-Cancer Agents Med Chem 15(2):258–266

    CAS  Google Scholar 

  • Tomlinson TB (1986) The botany of mangroves. Cambridge University Press, Cambridge, p 413

    Google Scholar 

  • Tsui CKM, Hyde KD (2004) Biodiversity of fungi on submerged wood in a stream and estuaries in the Tai Ho Bay, Hong Kong. Fungal Divers 15:171–186

    Google Scholar 

  • Ulken A (1972) Physiological studies on a phycomyceten from a mangrove at Cananeia, Sao Paulo, Brazil. Veroff. Inst. Meeresforsch. Bremerhaven 13:217–230

    Google Scholar 

  • Ulken A (1978) Growth experiments with different isolates of Phlyctochytrium mangrovis (Phycomycetes). Veröffentlichen Institut Meeresforschung Bremerhaven 17:21–31

    Google Scholar 

  • Ulken A (1981) The phycomycetes flora of mangrove swamps in the South Pasific. Verroff. Inst. Meeresfoasch. Bremerh 19:45–59

    Google Scholar 

  • Ulken A (1983) Distribution of Phycomycetes in mangrove swamps with brackish waters and wates of high salinity, Chapter 8. In: Teas HJ (ed) Biology and ecology of mangroves tasks for vegetations science, vol 8. Springer, Amsterdam, pp 111–116

    Google Scholar 

  • Ulken A (1986) Estimation of Thraustochytrid propagules in two mangrove swamps. Bot Mar 29:85–89

    Google Scholar 

  • Vanegas J, Munoz-García A, Pérez-Parra KA, Figueroa-Galvis I, Mestanza O, Polanía J (2019) Effect of salinity on fungal diversity in the rhizosphere of the halophyte Avicennia germinans from a semi-arid mangrove. Fungal Ecol 42:1–9

    Google Scholar 

  • Velmurugan N, Lee YS (2012) Enzymes from marine fungi: current research and future prospects. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. De Gryter, Berlin, pp 441–474

    Google Scholar 

  • Vrijmoed LLP, Hyde KD, Jones EBG (1994a) Observations on mangrove fungi from Macau and Hong Kong, with the description of two new ascomycetes: Diaporthe salsuginosa and Aniptodera haispora. Mycol Res 98:699–704

    Google Scholar 

  • Vrijmoed LLP, Jones EBG, Hyde KD (1994b) Observations on subtropical mangrove fungi in the Pearl River Estuary. Acta Scientiarum Naturalium Universitalis Sunyatseni 33:78–85

    Google Scholar 

  • Vrijmoed LLP, Jones EBG, Alias SA (1996) Preliminary observations on marine and mangrove fungi from Hainan island in Southern China. Asian J Trop Biol 2:31–38

    Google Scholar 

  • Weber RWS (2006) On the ecology of fungal consortia of spring sap-flows. Mycologist 20:140–143

    Google Scholar 

  • Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H, Kirk PM, Braun U, Singh RV, Crous PW, Kukwa M, Lucking RL, Kurtzman CP, Yurkov A, Haelewaters D, Aptroot A, Lumbsch T, Timdal E, Ertz D, Etayo J, Phillips AJL, Groenewald JZ, Papizadeh M, Selbmann L, Dayarathne MC, Weerakoon G, Jones EBG, Suetrong S, Tian Q, Castaneda-Ruiz RF, Bahkali AH, Pang KL, Tanaka K, Dai DQ, Sakayaroj J, Hujslova M, Lombard L, Shenoy BD, Suija A, Maharachchikumbura SSN, Thambugala KM, Wanasinghe DN, Sharma BO, Gaikwad S, Pandit G, Zucconi L, Onofri S, Egidi E, Raja HA, Kodsueb R, Caceres MES, Perez-Ortega S, Fiuza PO, Monteiro JS, Vasilyev LN, Shivas RG, Prieto M, Wedin M, Olariaga I, Lateef AA, Agrawal Y, Fazeli SAS, Amoozegar MA, Zhao GZ, Pfliegler WP, Sharma G, Oset M, Abdel-Wahab MA, Takamatsu S, Bensch K, de Silva NI, De Kesel A, Karunarathna A, Boonmee S, Pfister DH, Lu YZ, Luo ZL, Boonyuen N, Daranagama DA, Senanayake IC, Jayasiri SC, Samarakoon MC, Zeng XY, Doilom M, Quijada L, Rampadarath S, Heredia G, Dissanayake AJ, Jayawardana RS, Perera RH, Tang LZ, Phukhamsakda C, Hernandez-Restrepo M, Ma X, Tibpromma S, Gusmao LFP, Weerahewa D (2017) Notes for genera: Ascomycota. Fungal Divers 86:1–594

    Google Scholar 

  • Wijayawardene NN, Hyde KD, Lumbsch T, Liu JK, Maharachchikumbura SSN, Ekanayaka AH, Tian Q, Phookamsak R (2018) Outline of Ascomycota—2017. Fungal Divers 88:167–263

    Google Scholar 

  • Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephnson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Slebmann L, Pfliegler WP, Horváth E, Bensch K, Kirk PM, Kolaříková K, Raja HA, Radek R, Papp V, Dima V, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawłowska JZ, Humber RA, Kodsueb R, Sánchez-Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somrithipol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Mešić A, Tkalčec Z, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALCMA, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdoğdu M, Yurkov A, Schnittler M, Shchepin ON, Novozhilov YK, Silva-Filho AGS, Gentekaki E, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayaka LS, Kuhnert E, Grossart HP, Thines M (2020) Outline of Fungi and fungus-like taxa. Mycosphere 11:1060–1456

    Google Scholar 

  • Xu J (2015) Bioactive natural products derived from mangrove-associated microbes. RSC Adv 5(2):841–892

    CAS  Google Scholar 

  • Xu Z, Wu X, Feng Li G, Xu Z (2019) Pestalotiopisorin B, a new isocoumarin derivative from the mangrove endophytic fungus Pestalotiopsis sp. HHL101. Nat Prod Res 34(7):1002–1007

    PubMed  Google Scholar 

  • Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung GH (2006) An overview of the systematics of the Sordariomycetes based on four-gene phylogeny. Mycologia 98:1077–1088

    Google Scholar 

  • Zhang SN, Hyde KD, Jones EBG, Cheewangkoon R, Liu JK (2018) Acuminatispora palmarum gen. et sp. nov. from mangrove habitats. Mycol Prog 17:1–16

    Google Scholar 

  • Zhang SN, Hyde KD, Jones EBG, Jeewon J, Cheewangkoon R, Li JK (2019) Striatiguttulaceae, a new pleosporalean family to accommodate Longicorpus and Striatiguttula gen. nov. from palms. MycoKeys 49:99–129

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported under the Distinguished Scientist Fellowship Program (DSFP), King Saud University, Kingdom of Saudi Arabia. Gareth Jones thanks Kamarudin Isa for help with the fieldwork in Malaysia, the British Council for logistical and financial support for early mangrove studies in Hong Kong, Malaysia and Singapore and his students who have worked on mangrove fungi. Ka-Lai Pang thanks the Ministry of Science and Technology for financial support (MOST 105-2621-B-019-002-). V.V. Sarma thanks the Ministry of Earth Sciences, Govt. of India for funding a project (MOES/36/OO1S/Extra/40/2014/PC-IV dt.14.1.2015). K.D Hyde is grateful to the Thailand Research Fund (TRF) Grant No. RSA5980068 entitled Biodiversity, phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans; National Research Council of Thailand (NRCT) for a Grant entitled Diseases of mangrove trees and maintenance of good forestry practice (Grant Number: 60201000201). Jariya Sakayaroj thanks the Institute of Research and Innovation, School of Science and Walailak University for facilities and financial support (Grant No. WU62234). M.S. Calabon is grateful to the Mushroom Research Foundation and the Department of Science and Technology - Science Education Institute (Philippines).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. G. Jones.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devadatha, B., Jones, E.B.G., Pang, K.L. et al. Occurrence and geographical distribution of mangrove fungi. Fungal Diversity 106, 137–227 (2021). https://doi.org/10.1007/s13225-020-00468-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-020-00468-0

Keywords

Navigation