Skip to main content
Log in

A phylogenetic census of global diversity of gut anaerobic fungi and a new taxonomic framework

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Obligate anaerobic fungi of the phylum Neocallimastigomycota play a key role in digesting fibrous feeds in the gut of herbivores, but little is known about their global diversity. In this study, the collective diversity of gut anaerobic fungi was examined using all curated internal transcribed spacer 1 (ITS1) sequences of anaerobic gut fungi available in GenBank. The 262,770 quality-checked fungal ITS1 sequences downloaded from GenBank were assigned to 274 operational taxonomic units (OTUs) at the approximate species level. Of these approximate species-equivalent (Sp-eq) OTUs, 119 were represented by at least five ITS1 sequences, with 38 containing known species and 81 containing no known species. Based on a rarefaction analysis, the currently available ITS1 sequences represent nearly all the major species of gut anaerobic fungi, but much more sequencing effort is needed to assess the actual richness of minor OTUs. One dataset of ITS1 reference sequences (referred to as AF-RefSeq) and one comprehensive taxonomic framework are also presented, and they are shown to be suitable for taxonomic classification of most of the ITS1 sequences in GenBank. The results of the present study may help guide future studies involving taxonomic and phylogenetic analysis of ITS1 sequences of anaerobic fungi and targeted isolation and characterization of new anaerobic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akin DE, Gordon GL, Hogan JP (1983) Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfer. Appl Environ Microbiol 46:738–748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akin DE (1994) Ultrastructure of plant cell walls degraded by anaerobic fungi. In: Mountfort D, Orpin CG (eds) Anaerobic Fungi: Biology, Ecology and Function. Marcel Dekker, New York, pp 169–190

  • Ariyawansa HA, Hyde KD, Jayasiri SC et al (2015) Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 75:27–274. https://doi.org/10.1007/s13225-015-0346-5

    Article  Google Scholar 

  • Barr DJS, Kudo H, Jakober KD, Cheng KJ (1989a) Morphology and development of rumen fungi: Neocallimastix sp., Piromyces communis, and Orpinomyces bovis gen. nov., sp. nov. Can J Bot 67:2815–2824

    Article  Google Scholar 

  • Barr DJS, Kudo H, Jakober KD, Chong KJ (1989b) Morphology and development of rumen fungi: Neocallimastix sp., Piromyces communis and Orpinomyces bovis. Can J Bot 67:2815–2819

    Article  Google Scholar 

  • Berger SA, Stamatakis A (2011) Aligning short reads to reference alignments and trees. Bioinformatics 27:2068–2075. https://doi.org/10.1093/bioinformatics/btr320

    Article  CAS  PubMed  Google Scholar 

  • Breton A, Bernalier A, Bonnemoy F (1989) Morphology and metabolic characterization of a new species of strictly anaerobic rumen fungus: Neocallimastix joyonii. FEMS Microbiol Lett 58:309–314

    Article  CAS  Google Scholar 

  • Breton A, Bernalier M, Dusser G, Fonty B, Martinie Gaillard, Guillot J (1990) Anaeromyces mucronatus nov. gen., nov. sp.: a new strictly anaerobic rumen fungus with polycentric thallus. FEMS Microbiol Lett 70:177–182

    Google Scholar 

  • Brookman JL, Mennim G, Trinci APJ, Theodorou MK, Tuckwell DS (2000) Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 18S rRNA. Microbiology 146:393–403

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Sun Y (2011) ESPRIT-Tree: hierarchical clustering analysis of millions of 16S rRNA pyrosequences in quasilinear computational time. Nucleic Acids Res 39:e95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderon-Cortes JF, Elliott R, Ford CW (1989) Influence of rumen fungi on the nutrition of sheep fed forage diets. In: Nolan JV, Leng RA, Demeyer DI (eds) The Roles of Protozoa and Fungi in Ruminant Digestion. Penumbul Books, Armidale, Australia, pp 181–187

    Google Scholar 

  • Callaghan TM, Podmirseg SM, Hohlweck D, Edwards JE, Puniya AK, Dagar SS, Griffith GW (2015) Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo feces. MycoKeys 9:11–28. https://doi.org/10.3897/mycokeys.9.9032

    Article  Google Scholar 

  • Chen YC, Tsai SD, Cheng HL, Chien CY, Hu CY, Cheng TY (2007) Caecomyces sympodialis sp. nov., a new rumen fungus isolated from Bos indicus. Mycologia 99:125–130

    Article  CAS  PubMed  Google Scholar 

  • Dagar SS, Kumar S, Griffith GW, Joan E, Edwards JE, Callaghan TM, Singh R, Nagpal AK, Puniya AK (2015) A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biol 119:731–737

    Article  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doré J, Stahl DA (1991) Phylogeny of anaerobic rumen Chytridiomycetes inferred from small subunit ribosomal RNA sequence comparisons. Can J Bot 69:1964–1971

    Article  Google Scholar 

  • Elliott R, Ash AJ, Calderon-Cortes Norton BW, Bauchop T (1987) The influence of anaerobic fungi on rumen volatile fatty acid concentrations in vivo. J Agric Sci 109:13–17

    Article  Google Scholar 

  • Fliegerova K, Hodrova B, Voigt K (2004) Classical and molecular approaches as a powerful tool for the characterization of rumen polycentric fungi. Folia Microbiol 49:157–164

    Article  CAS  Google Scholar 

  • Gold JJ, Heath IB, Bauchop T (1988) Ultrastructural description of a new chytrid genus of caecum anaerobe, Caecomyces equi gen. nov. sp. nov. assigned to the Neocallimastcaceae. Biosystems 21:403–415

    Article  CAS  PubMed  Google Scholar 

  • Gordon GLR, Phillips MW (1998) The role of anaerobic gut fungi in ruminants. Nutr Res Rev 11:133–168

    Article  CAS  PubMed  Google Scholar 

  • Grenet E, Breton A, Barry P, Fonty G (1989) Rumen anaerobic fungi and plant substrate colonization as affected by diet composition. Anim Feed Sci Technol 26:55–70

    Article  Google Scholar 

  • Griffith GW, Baker S, Fliegerova K, Liggenstoffer A, Giezen M, Voigt K, Beakes G (2010) Anaerobic fungi: Neocallimastigomycota. IMA Fungus 1:181–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruninger RJ, Puniya AK, Callghan TM et al (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90:1–17

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hanafy RA, Elshahed MS, Liggenstoffer AS, Griffith GW, Youssef NH (2017) Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia 109:231–243

    Article  PubMed  Google Scholar 

  • Heath IB, Kaminasky J, Bauchop T (1986) Basal body loss during fungal zoospore encystment: evidence against centriole autonomy. J Cell Sci 83:135–140

    CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PE et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Ho YW, Barr DJS (1995) Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia 87:655–677

    Article  Google Scholar 

  • Ho YW, Bauchop T (1990) Ruminomyces elegans gen. eet sp. nov. A polycentric anaerobic rumen fungus from cattle. Mycotoxon 38:397–405

    Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes JB, Bohannan BJM (2004) Application of ecological diversity statistics in microbial ecology. Mol Microb Ecol Manual 7(01):1321–1344

    Google Scholar 

  • Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishaq SL, AlZahal O, And Walker, McBride B (2017) An investigation into rumen fungal and protozoal diversity in three rumen fractions, during high-fiber or grain-induced subacute ruminal acidosis conditions, with or without active dry yeast supplementation. Front Microbiol 8:1943

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim M, Morrison M, Yu ZT (2011) Status of microbial diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76:49–63

    Article  CAS  PubMed  Google Scholar 

  • Kittelmann S, Naylor GE, Koolaard JP, Janssen PH (2012) A proposed taxonomy of anaerobic fungi (Class Neocallimastigomycetes) suitable for large scale sequence based community structure analysis. PLoS ONE 7:e36866. https://doi.org/10.1371/journal.pone.0036866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koetschan C, Kittelmann S, Lu J, Al-Halbouni D, Jarvis GN et al (2014) Internal transcribed spacer 1 secondary structure analysis reveals a common core throughout the anaerobic fungi (Neocallimastigomycota). PLoS ONE 9:e91928. https://doi.org/10.1371/journal.pone.0091928

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30:3276–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larue R, Yu Z, Parisi VA, Egan AR, Morrison M (2005) Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ Microbiol 7:530–543

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for display and annotation of phylogenetic and other trees. Nucleic Acids Res 44 (Web Server issue):W242–W245

  • Li J, Heath IB, Bauchop T (1990) Piromyces mae and Piromyces dumbonica, two new species of uniflagellate anaerobic chytridomycete fungi from hindgut of the horse and elephant. Can J Bot 68:1021–1033

    Article  Google Scholar 

  • Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS (2010) Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 4:1225–1235

    Article  PubMed  Google Scholar 

  • Ljungdahl LG (2008) The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its use. Ann NY Acad Sci 1125:308–321

    Article  CAS  PubMed  Google Scholar 

  • Matsen FA, Kodner RB, Armburst EV (2010) PPLACER: linear time maximum - likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11:538

    Article  PubMed  PubMed Central  Google Scholar 

  • Min B, Solaiman SG, Shange R, Eun J (2014) Gastrointestinal bacterial and methanogenic archaea diversity dynamics associated with condensed tannin containing pine bark diet in goats using 16S rDNA amplicon pyrosequencing. Int J Microbiol. https://doi.org/10.1155/2014/141909

    PubMed  PubMed Central  Google Scholar 

  • Monard C, Gantner S, Stenlid J (2013) Utilizing ITS1 and ITS2 to study environmental fungal diversity using pyrosequencing. FEMS Microbiol Ecol 84:165–175

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Schmidt HA, Haeseler A, Minh BQ (2014) A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen N, Warnow T, Pop M, White B (2016) A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. Biofilms Microbiomes 2:16004. https://doi.org/10.1038/npjbiofilms.2016.4

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholson MJ, McSweeney CS, Mackie RI, Brookman JL, Theodorou MK (2010) Diversity of anaerobic gut fungal populations analyzed using ribosomal ITS1 sequences in faeces of wild and domesticated herbivores. Anaerobe 16:66–73

    Article  CAS  PubMed  Google Scholar 

  • Orpin CG (1975) Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91:249–262

    Article  CAS  PubMed  Google Scholar 

  • Orpin CG (1976) Studies on the rumen flagellate Sphaeromonas communis. J Gen Microbiol 94:270–280

    Article  CAS  PubMed  Google Scholar 

  • Orpin CG (1977) The rumen flagellate Piromonas communis: its life history and invasion of plant material in the rumen. J Gen Microbiol 99:107–117

    Article  CAS  PubMed  Google Scholar 

  • Orpin CG, Munn EA (1986) Neocallimastix patriciarum sp. nov., a new member of the Neocallimasticaceae inhabiting the rumen of sheep. Trans Br Mycol Soc 86:178–181

    Article  Google Scholar 

  • Ozkose E, Thomas BJ, Davies DR, Griffith GW, Theodorou MK (2001) Cyllamyces aberensis gen.nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can J Bot 79:666–673

    Google Scholar 

  • Paul SS, Kamra DN, Sastry VRB, Sahu NP, Agarwal N (2004) Effect of administration of an anaerobic gut fungus isolated from wild blue bull (Boselaphus tragocamelus) to buffaloes (Bubalus bubalis) on in vivo ruminal fermentation and digestion of nutrients. Anim Feed Sci Technol 115:143–157

    Article  Google Scholar 

  • Paul SS, Deb SM, Punia BS, Singh D, Kumar R (2010) Fibrolytic potential of anaerobic fungi (Piromyces sp.) isolated from wild cattle and wild blue bull in pure culture and effect of their addition on in vitro fermentation of wheat straw and methane emission by rumen fluid of buffaloes. J Sci Food Agric 90:1218–1226

    Article  CAS  PubMed  Google Scholar 

  • Phillips MW, Gordon GLR (1988) Sugar and polysaccharide fermentation by anaerobic fungi from Australia, Britain and New Zealand. Biosystems 21:377–383

    Article  CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2:e92. https://doi.org/10.1371/journal.pcbi.0020092

    Article  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Westcott SL, Thomas R et al (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seibel PN, Müller T, Dandekar T, Schultz J, Wolf M (2006) 4SALE—a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 7:498

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharpton TJ, Riesenfeld SJ, Kembel SW, Ladau J, O’Dwyer JP, Green JL, Eisen JA, Pollard KS (2011) PhylOTU: a high-throughput procedure quantifies microbial community diversity and resolves novel taxa from metagenomic data. PLoS Comput Biol 7:e1001061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Iliev ID, Brown J, Underhill DM, Funari VA (2015) Mycobiome: approaches to analysis of intestinal fungi. J Immunol Methods 421:112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuckwell DS, Nicholson MJ, McSweeney CS, Theodorou MK, Brookman JL (2005) The rapid assignment of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. Microbiology 151:1557–1567

    Article  CAS  PubMed  Google Scholar 

  • Vargas-Gastelum L, Romero-Olivares Al, Escalante AE, Rocha-Olivares A, Brizuela C, Riquelme M (2015). Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing. FEMS Microbiol Ecol 91(5). https://doi.org/10.1093/femsec/fiv044. Epub 2015 Apr 14

  • Webb J, Theodorou MK (1991) Neocallimastix hurleyensis sp. nov., an anaerobic fungus from the ovine rumen. Can J Bot 69:1220–1224

    Article  Google Scholar 

  • Wei S, Morrison M, Yu Z (2013) Bacterial census of poultry intestinal microbiome. Poult Sci 92:671–683

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wang L, Liu L (2014) Bacterial community structure and its regulating factors in the intertidal sediment along the Liadong Bay of Bohai Sea, China. Microbiol Res 169:585–592

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by an OARDC Grant (2010-007). S. Paul’s tenure at The Ohio State University was supported by a Cutting Edge Research Enhancement and Scientific Training Award Overseas Fellowship from Department of Biotechnology, Government of India. There is no potential source of conflict of interest regarding this article.

Author information

Authors and Affiliations

Authors

Contributions

S.S.P. and Z.Y. conceived the study and prepared the plan of analysis. S.S.P. collected and analyzed the data. S.S.P. and Z.Y. wrote the paper. D.B., J.X. and K.H. emended the paper.

Corresponding author

Correspondence to Zhongtang Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1: AF-RefSeq - reference sequence dataset for ITS1 sequences of anaerobic fungi (FASTA 241 kb)

Supplementary material 2: The phylogenetic tree constructed using the AF-RefSeq dataset (PDF 2961 kb)

13225_2018_396_MOESM3_ESM.zip

Supplementary material 3: The AF-PP.RefPkg - A reference package for phylogenetic placement-based taxonomic classification of ITS1 sequences of anaerobic fungi for use with PPLACER. The reference package contains the following eight files: afsgo.fasta, afsgo.phyml.nwk, afsgo_phy_phyml_stats.txt, afsgo_seq_info.csv, afsgo_taxa.csv, CONTENTS.json, Phylo_modelQ5KBdB.json, and treeDf2s_R.tre (ZIP 21 kb)

Supplementary material 4: Rarefaction curves (PPTX 515 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.S., Bu, D., Xu, J. et al. A phylogenetic census of global diversity of gut anaerobic fungi and a new taxonomic framework. Fungal Diversity 89, 253–266 (2018). https://doi.org/10.1007/s13225-018-0396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-018-0396-6

Keywords

Navigation