Skip to main content

Advertisement

Log in

Pestalotiopsis—morphology, phylogeny, biochemistry and diversity

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

The genus Pestalotiopsis has received considerable attention in recent years, not only because of its role as a plant pathogen but also as a commonly isolated endophyte which has been shown to produce a wide range of chemically novel diverse metabolites. Classification in the genus has been previously based on morphology, with conidial characters being considered as important in distinguishing species and closely related genera. In this review, Pestalotia, Pestalotiopsis and some related genera are evaluated; it is concluded that the large number of described species has resulted from introductions based on host association. We suspect that many of these are probably not good biological species. Recent molecular data have shown that conidial characters can be used to distinguish taxa; however, host association and geographical location is less informative. The taxonomy of the genera complex remains confused. There are only a few type cultures and, therefore, it is impossible to use gene sequences in GenBank to clarify species names reliably. It has not even been established whether Pestalotia and Pestalotiopsis are distinct genera, as no isolates of the type species of Pestalotia have been sequenced, and they are morphologically somewhat similar. When selected GenBank ITS accessions of Pestalotiopsis clavispora, P. disseminata, P. microspora, P. neglecta, P. photiniae, P. theae, P. virgatula and P. vismiae are aligned, most species cluster throughout any phylogram generated. Since there appears to be no living type strain for any of these species, it is unwise to use GenBank sequences to represent any of these names. Type cultures and sequences are available for the recently described species P. hainanensis, P. jesteri, P. kunmingensis and P. pallidotheae. It is clear that the important species in Pestalotia and Pestalotiopsis need to be epitypified so that we can begin to understand the genus/genera. There are numerous reports in the literature that various species produce taxol, while others produce newly discovered compounds with medicinal potential and still others cause disease. The names assigned to these novel compound-producing taxa lack an accurate taxonomic basis, since the taxonomy of the genus is markedly confused. Until the important species have been epitypified with living strains that have been sequenced and deposited in public databases, researchers should refrain from providing the exact name of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal AK, Chauhan S (1988) A new species of the genus Pestalotiopsis from Indian soil. Indian Phytopathol 41:625–627

    Google Scholar 

  • Agnihothrudu V (1964) A world list of fungi reported on tea. J Madras University 34:155–271

    Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic, USA

    Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41(1):1–16

    Google Scholar 

  • Armstrong-Cho CL, Banniza S (2006) Glomerella truncata sp. nov., the teleomorph of Colletotrichum truncatum. Mycol Res 110:951–956

    PubMed  Google Scholar 

  • Bajo J, Santamaria O, Diez J (2008) Cultural characteristics and pathogenicity of Pestalotiopsis funerea on Cupressus arizonica. For Pathol 38:263–274

    Google Scholar 

  • Barr ME (1975) Pestalosphaeria, a new genus in the Amphisphaeriaceae. Mycologia 67:187–194

    Google Scholar 

  • Barr ME (1990) Prodromus to nonlichenized, pyrenomycetous members of class Hymenoascomycetes. Mycotaxon 39:43–184

    Google Scholar 

  • Bate-Smith EC, Metcalfe CR (1957) Leucanthocyanins .3. The nature and systematic distribution of tannin in dicotyledonous plants. J Linn Soc (Bot) 55:669–705

    Google Scholar 

  • Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204

    Google Scholar 

  • Cannon PF, Kirk PM (2000) The philosophy and practicalities of amalgamating anamorph and teleomorph concepts. Stud Mycol 45:19–25

    Google Scholar 

  • Chaverri P, Castlebury LA, Overton BE, Samuels GJ (2003) Hypocrea/Trichoderma: species with conidiophore elongations and green conidia. Mycologia 95:1100–1140

    PubMed  Google Scholar 

  • Chen YX, Wei G, Chen WP (2002) New species of Pestalotiopsis. Mycosystema 21:316–323

    Google Scholar 

  • Das Ranjana, Chutia M, Das K, Jha DK (2010) Factors affecting sporulation of Pestalotiopsis disseminata causing grey blight disease of Persea bombycina Kost., the primary food plant of muga silkworm. Crop Prot 29:963–968

  • De Notaris G (1839) Micromycetes italiei Dec II. Mere R Acad Sci Torino II 3:80–81

    Google Scholar 

  • Dennis RWG (1995) Fungi of the South East England. Royal Botanic Gardens, Kew

    Google Scholar 

  • Deyrup ST, Swenson DC, Gloer JB, Wicklow DT (2006) Caryophyllene sesquiterpenoids from a fungicolous isolate of Pestalotiopsis disseminata. J Nat Prod 69:608–611

    PubMed  CAS  Google Scholar 

  • Diener UL, Wagener RE, Morgan-Jones G, Davis ND (1976) Toxigenic fungi from cotton. Phytopathology 66:514–516

    Google Scholar 

  • Ding G, Liu S, Guo L, Zhou Y, Che Y (2008a) Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J Nat Prod 71(4):615–618

    PubMed  CAS  Google Scholar 

  • Ding G, Jiang L, Guo L, Chen X, Zhang H, Che Y (2008b) Pestalazines and pestalamides, bioactive metabolites from the plant pathogenic fungus Pestalotiopsis theae. J Nat Prod 71(11):1861–1865

    PubMed  CAS  Google Scholar 

  • Ding G, Zheng Z, Liu S, Zheng H, Guo L, Che Y (2009) Photinides A-F, cytotoxic benzofuranone-derived γ-lactones from the plant endophytic fungus Pestalotiopsis photiniae. J Nat Prod 72:942–945

    PubMed  CAS  Google Scholar 

  • Dodd SL, Lieckfeldt E, Samuels GJ (2003) Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia 95:27–40

    PubMed  Google Scholar 

  • Douanla-Meli C, Langer E (2009) Pestalotiopsis theae (Ascomycota, Amphisphaeriaceae) on seeds of Diospyros crassiflora (Ebenaceae). Mycotaxon 107:441–448

    Google Scholar 

  • Dube HC, Bilgrami KS (1965) Variations in the conidial morphology of Pestalotiopsis darjeelingensis in culture. Curr Sci 34:487

    Google Scholar 

  • Egger KN (1995) Molecular analysis of ectomycorrhizal fungal communities. Can J Bot 73:1415–1422

    Google Scholar 

  • Elliott ML, Broschat TK, Uchida JY, Simone GW (eds) (2004) Diseases and disorders of ornamental palms. American Phytopathological Society, St. Paul

    Google Scholar 

  • Ellis MB, Ellis JP (1997) Microfungi on land plants: an identification handbook, 2nd edn (New Enlarged). The Richmond Publishing Co. Ltd

  • Espinoza JG, Briceno EX, Keith LM, Latorre BA (2008) Canker and Twig Dieback of blueberry caused by Pestalotiopsis spp. and a Truncatella sp. in Chile. Plant Dis 92:1407–1414

    Google Scholar 

  • Fail GL, Langenheim JH (1990) Infection process of Pestalotia subcuticularis on leaves of Hymenaea courbaril. Phytopathology 80:1259–1265

    Google Scholar 

  • Gangadevi V, Murugan M, Muthumary J (2008) Taxol determination from Pestalotiopsis pauciseta, a fungal endophyte of a medicinal plant. Chin J Biotechnol 24(8):1433–1438

    CAS  Google Scholar 

  • Gehlot P, Bohra NK, Purohit DK (2008) Endophytic mycoflora of inner bark of Prosopis cineraria—a key stone tree species of Indian desert. Am-Eur J Bot 1(1):01–04

    Google Scholar 

  • Gomes-Figueiredo J, Pimentel IC, Vicente VA, Pie MR, Kava-Cordeiro V, Galli-Terasawa L, Pereira JO, de Souza AQ, Glienke C (2007) Bioprospecting highly diverse endophytic Pestalotiopsis spp. with antibacterial properties from Maytenus ilicifolia, a medicinal plant from Brazil. Can J Microbiol 53(10):1123–1132

    PubMed  CAS  Google Scholar 

  • Griffiths DA, Swart HJ (1974a) Conidial structure in two species of Pestalotiopsis. Trans Br Mycol Soc 62:295–304

    Google Scholar 

  • Griffiths DA, Swart HJ (1974b) Conidial structure in Pestalotia pezizoides. Trans Br Mycol Soc 63:169–173

    Google Scholar 

  • Guba EF (1956) Monochaetia and Pestalotia vs. Truncatella, Pestalotiopsis and Pestalotia. Ann Microb Enzymol Milan 7:74–76

    Google Scholar 

  • Guba EF (1961) Monograph of Pestalotia and Monochaetia. Harvard University Press, Cambridge

    Google Scholar 

  • Halfeld-Vieira BA, Nechet KA (2006) First report of Pestalotiopsis macrochaeta on Carapa guianensis. Plant Pathol 55:304

    Google Scholar 

  • Harper JK, Barich DH, Hu JZ, Strobel GA, Grant DM (2003) Stereochemical analysis by solid-state NMR: structural predictions in ambuic acid. J Org Chem 68:4609–4614

    PubMed  CAS  Google Scholar 

  • Hopkins KE, McQuilken MP (1997) Pestalotiopsis on nursery stock, in HDC Project News No 39. Horticultural Development Council, East Malling

    Google Scholar 

  • Hopkins KE, McQuilken MP (2000) Characteristics of Pestalotiopsis associated with hardy ornamental plants in the UK. Eur J Plant Pathol 106:77–85

    Google Scholar 

  • Horikawa T (1986) Yield loss of new tea shoots due to grey blight caused by Pestalotia longiseta Spegazzini. Bull Shizuoka Tea Exp Stn 12:1–8

    Google Scholar 

  • Hu HL, Jeewon R, Zhou DQ, Zhou TX, Hyde KD (2007) Phylogenetic diversity of endophytic Pestalotiopsis species in Pinus armandii and Ribes spp.: evidence from rDNA and β-tubulin gene phylogenies. Fungal Divers 24:1–22

    CAS  Google Scholar 

  • Hyde KD (1996) Fungi from palms. XXV. Pestalosphaeria elaeidis. Mycotaxon 57:353–357

    Google Scholar 

  • Hyde KD, Fröhlich J (1995) Mycosphaerella palmicola associated with leaf spots of Cocos nucifera in Australia Iran Jaya and Papua New Guinea. Mycol Res 99:704–706

    Google Scholar 

  • Hyde KD, Zhang Y (2008) Epitypification: should we epitypify?. Journal of Zhejiang University Science B 9:842–846.

    Google Scholar 

  • Hyde KD, McKenzie EHC, KoKo TW (2011) Towards incorporating anamorphic fungi in a natural classification—checklist and notes for 2010. Mycosphere 2(1):1–88

    Google Scholar 

  • Jeewon R, Liew ECY, Hyde KD (2002) Phylogenetic relationships of Pestalotiopsis and allied genera inferred from ribosomal DNA sequences and morphological characters. Mol Phylogenet Evol 25:378–392

    PubMed  CAS  Google Scholar 

  • Jeewon R, Liew ECY, Simpson JA, Hodgkiss IJ, Hyde KD (2003) Phylogenetic significance of morphological characters in the taxonomy of Pestalotiopsis species. Mol Phylogenet Evol 27:372–383

    PubMed  CAS  Google Scholar 

  • Jeewon R, Liew ECY, Hyde KD (2004) Phylogenetic evaluation of species nomenclature of Pestalotiopsis in relation to host association. Fungal Divers 17:39–55

    Google Scholar 

  • Jeon YH, Kim SG, Kim YH (2007) First report on leaf blight of Lindera obtusiloba caused by Pestalotiopsis microspora in Korea. Plant Pathol 56:349

    Google Scholar 

  • Joshi SD, Sanjay R, Baby UI, Mandal AKA (2009) Molecular characterization of Pestalotiopsis spp. associated with tea (Camellia sinensis) in southern India using RAPD and ISSR markers. Indian J Biotechnol 8(4):377–383

    CAS  Google Scholar 

  • Kai A, Kikawa M, Hatanaka K, Matsuzaki K, Mimura T, Kaneko Y (2003) Biosynthesis of hetero-polysaccharides by Pestalotiopsis microspora from various monosaccharides as carbon source. Carbohydr Polym 54:381–383

    CAS  Google Scholar 

  • Kang JC, Kong RYC, Hyde KD (1998) Studies on the Amphisphaeriales I. Amphisphaeriaceae (sensu stricto) and its phylogenetic relationships inferred from 5.8S rDNA and ITS2 sequences. Fungal Divers 1:147–157

    Google Scholar 

  • Kang JC, Hyde KD, Kong RYC (1999) Studies on the Amphisphaeriales. The Amphisphaeriaceae (sensu stricto). Mycol Res 103:53–64

    Google Scholar 

  • Karaca GH, Erper I (2001) First report of Pestalotiopsis guepinii causing twig blight on hazelnut and walnut in Turkey. Plant Pathol 50:415

    Google Scholar 

  • Kaushik CD, Thakur DP, Chand JN (1972) Parasitism and control of Pestalotia psidii causing cankerous disease of ripe guava fruits. Indian Phytopathol 25:61–64

    CAS  Google Scholar 

  • Keith LM, Zee FT (2010) Guava disease in Hawaii and the characterization of Pestalotiopsis spp. affecting guava. Acta Horticulturae (ISHS) 849:269–276

    Google Scholar 

  • Keith LM, Velasquez ME, Zee FT (2006) Identification and characterization of Pestalotiopsis spp. causing scab disease of guava, Psidium guajava in Hawaii. Plant Dis 90:16–23

    CAS  Google Scholar 

  • Kendrick B (ed) (1979) The whole fungus: the sexual-asexual synthesis. Volume 1–2. National Museums of Canada, Ottawa

    Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, Wallingford

    Google Scholar 

  • Klebahn H (1914) Beitrage zur Kenntnis der Fungi Imperfecti. Zur Kritik einiger Pestalozzia-Arten. Mykol Zbl 4:1–19

    Google Scholar 

  • Kobayashi T, Ishihara M, Ono Y (2001) A new species of Pestalosphaeria, the telomorph of Pestalotiopsis neglecta. Mycoscience 42:211–216

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer VB (2001) Fungi on Juncus roemerianus 16. More new coelomycetes, including Tetranacriella gen. nov. Bot Mar 44:147–156

    Google Scholar 

  • Korsten L, De Jager ES, De Villers EE, Lourens A, Kotze JM, Wehner FC (1995) Evaluation of bacterial epiphytes isolated from avocado leaf and fruit surfaces for biocontrol of avocado postharvest diseases. Plant Dis 79:1149

    Google Scholar 

  • Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers 17:69–90

    CAS  Google Scholar 

  • Kwee LT, Chong KK (1990) Guava in Malaysia: production, pests and diseases. Tropical Press SDN. BHD, Kuala Lumpur

    Google Scholar 

  • Kwon GS, Moon SH, Hong SD, Lee HM, Kim HS, Oh HM, Yoon BD (1996) A novel flocculant biopolymer produced by Pestalotiopsis sp. KCTC 8637P. Biotechnol Lett 18(12):1459–1464

    CAS  Google Scholar 

  • Lee JC, Yang X, Schwartz M, Strobel G, Clardy J (1995) The relationship between an endangered North American tree and an endophytic fungus. Chem Biol 2:721–727

    PubMed  CAS  Google Scholar 

  • Lee JC, Strobel GA, Lobkovsky E, Clardy JC (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233

    CAS  Google Scholar 

  • Li JY, Strobel GA (2001) Jesterone and hydroxy-jesterone antioomycetcyclohexenenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 57:261–265

    PubMed  CAS  Google Scholar 

  • Li JY, Strobel GA, Sidhu RS, Hess WM, Ford EJ (1996) Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 142:2223–2226

    PubMed  CAS  Google Scholar 

  • Li E, Tian R, Liu S, Chen X, Guo L, Che Y (2008a) Pestalotheols A–D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J Nat Prod 71(4):664–668

    PubMed  CAS  Google Scholar 

  • Li E, Jiang L, Guo L, Zhang H, Che Y (2008b) Pestalachlorides A–C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 16:7894–7899

    PubMed  CAS  Google Scholar 

  • Liu AR, Wu XP, Xu T, Guo LD, Wei JG (2006) Notes on endophytic Pestalotiopsis from Hainan, China. Mycosystema 25:389–397

    CAS  Google Scholar 

  • Liu AR, Xu T, Guo LD (2007) Molecular and morphological description of Pestalotiopsis hainanensis sp. nov., a new endophyte from a tropical region of China. Fungal Divers 24:23–36

    CAS  Google Scholar 

  • Liu L, Liu S, Jiang L, Chen X, Guo L, Che Y (2008a) Chloropupukeananin, the first chlorinated pupukeanane derivative, and its precursors from Pestalotiopsis fici. Org Lett 10:1397–1400

    PubMed  CAS  Google Scholar 

  • Liu L, Tian RR, Liu SC, Chen XL, Guo LD, Che YS (2008b) Pestaloficiols A–E, bioactive cyclopropane derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem 16:6021–6026

    PubMed  CAS  Google Scholar 

  • Liu L, Li Y, Liu SC, Zheng ZH, Chen XL, Zhang H, Guo LD, Che YS (2009) Chloropestolide A, an antitumor metabolite with an unprecedented spiroketal skeleton from Pestalotiopsis fici. Org Lett 11:2836–2839

    PubMed  CAS  Google Scholar 

  • Liu AR, Chen SC, Wu SY, Xu T, Guo LD, Jeewon R, Wei JG (2010a) Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy. Mol Phylogenet Evol 57:528–535

    PubMed  CAS  Google Scholar 

  • Liu L, Niu S, Lu X, Chen X, Zhang H, Guo L, Che Y (2010b) Unique metabolites of Pestalotiopsis fici suggest a biosynthetic hypothesis involving a Diels-Alder reaction and then mechanistic diversification. Chem Comm 46:460–462

    PubMed  CAS  Google Scholar 

  • Long DM, Smidansky ED, Archer A, Strobel GA (1998) In vivo addition of telomeric repeats to foreign DNA generates extrachromosomal DNAs in the taxol-producing fungus Pestalotiopsis microspora. Fungal Genet Biol 24:335–344

    PubMed  CAS  Google Scholar 

  • Madar Z, Solel Z, Kimchi M (1991) Pestalotiopsis canker of Cypress in Israel. Phytoparasitica 19(1):79–81

    Google Scholar 

  • McQuilken MP, Hopkins KE (2004) Biology and integrated control of Pestalotiopsis on container-grown ericaceous crops. Pest Manag Sci 60:135–142

    PubMed  CAS  Google Scholar 

  • Metz AM, Haddad A, Worapong J, Long DM, Ford EJ, Hess WM, Strobel GA (2000) Induction of the sexual stage of Pestalotiopsis microspora, a taxol-producing fungus. Microbiology 146:2079–2089

    PubMed  CAS  Google Scholar 

  • Moreau C (1949) Micomycetes africains. I. Rev Mycol, Suppl Colon (Paris) 14:15–22

    Google Scholar 

  • Muraleedharan N, Chen ZM (1997) Pests and diseases of tea and their management. J Plant Crop 25:15–43

    Google Scholar 

  • Nag Rag TR (1993) Coelomycetous anamorphs with appendage bearing conidia. Mycologue, Waterloo

    Google Scholar 

  • Nag Raj TR (1985) Redisposals and redescriptions in the Monochaetia.Seiridium, PestalotiaPestalotiopsis complexes. II. Pestalotiopsis besseyii (Guba) comb. nov. and Pestalosphaeria varia sp. nov. Mycotaxon 22:52–63

    Google Scholar 

  • Nagata T, Ando Y (1989) Oxysporone, a phytotoxin isolated from the tea gray blight fungus Pestalotia longiseta. Agric Biol Chem 53:2811

    CAS  Google Scholar 

  • Nagata T, Ando Y, Hirota A (1992) Phytotoxins from tea gray blight fungi, Pestalotiopsis longiseta and Pestalotiopsis theae. Biosci Biotechnol Biochem 56:810–811

    CAS  Google Scholar 

  • Okane I, Nagagiri A, Ito T (1998) Endophytic fungi in leaves of ericaceous plants. Can J Bot 76:657–663

    Google Scholar 

  • Osono T, Takeda H (1999) Decomposing ability of interior and surface fungal colonizers of beech leaves with reference to lignin decomposition. Eur J Soil Biol 35:51–56

    Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Pal AK, Purkayastha RP (1992) New parasitic fungi from Indian mangrove. J Mycopathol Res 30:173–176

    Google Scholar 

  • Pandey RR (1990) Mycoflora associated with floral parts of guava (Psidium guajava L.). Acta Bot Sin 18:59–63

    Google Scholar 

  • Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AF, Sutherland JB (2001) The fungus Pestalotiopsis guepinii as a model for biotransformation of ciprofloxacin and norfloxacin. Appl Microbiol Biotechnol 56:474–477

    PubMed  CAS  Google Scholar 

  • Petrak VF (1947) Neobroomella n. gen., eine neue Gattung der Sphaeriales. Sydowia 1(1–3):5

    Google Scholar 

  • Pirone PP (1978) Diseases and pests of ornamental plants. Wiley Interscience, New York

    Google Scholar 

  • Purohit DK, Bilgrami KS (1969) Variations in the conidial morphology of genus Pestalotiopsis. Indian Phytopathology 22:275–279

    Google Scholar 

  • Reynolds DR (1993) The fungal holomorph: an overview. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Oxon, pp 15–25

    Google Scholar 

  • Rivera MC, Wright ER (2000) First report of azalea petal blight caused by Pestalotiopsis guepinii in Argentina. Plant Dis 84:100

    Google Scholar 

  • Rodrigues KF, Costa GL, Carvalho MP, Epifanio RA (2005) Evaluation of extracts produced by some tropical fungi as potential cholinesterase inhibitors. World J Microbiol Biotechnol 21:1617–1621

    Google Scholar 

  • Sangchote S, Farungsang U, Farungsang N (1998) Pre and postharvest infection of rambutan by pathogens and effect on postharvest treatments. In: Coates LM, Hofman PJ, Johnson GI (eds) Disease control and storage life extension in fruits. Proceeding of an international workshop held at Chaing Mai, Thailand May 22–23, 1997. ACIAR Proceeding No. 81: 87–91

  • Sanjay R, Ponmurugan P, Baby UI (2008) Evaluation of fungicides and biocontrol agents against grey blight disease of tea in the field. Crop Prot 27:689–694

    CAS  Google Scholar 

  • Sati SC, Belwal M (2005) Aquatic hyphomycetes as endophytes of riparian plant roots. Mycologia 97:45–49

    PubMed  CAS  Google Scholar 

  • Satya HN, Saksena SB (1984) Some aspects of taxonomy of the genus Pestalotia I-Color intensities of intermediate cells of spores. In: Subramanian CV (ed) Proceedings of the International Symposium on Taxonomy of Fungi

  • Schwendener S (1868) Ueber die Beziehungen zwischen Algen und Flechtengonidien. Bot Zeitung 26:289–292

    Google Scholar 

  • Servazzi O (1953) Nuovo Giorn. Bot. Ital. 60 (n.s.) 4:943–947

  • Shearer CA, Raja HA, Schmit JP (2007) Freshwater ascomycetes and their anamorphs—website available online at http://www.life.uiuc.edu/fungi/

  • Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Divers 26:1–54

    Google Scholar 

  • Shimada A, Takahashi I, Kawano T, Kimura YZ (2001) Chloroisosulochrin, chloroisosulochrin dehydrate, and pestheic acid, plant growth regulators, produced by Pestalotiopsis theae. J Biosci (Z Naturforsch) 56b:797–803

    Google Scholar 

  • Singh NI (1981) Some new host records for India. Indian Phytopathology 34:233–234

    Google Scholar 

  • Sousa MF, Tavares RM, Gerós H, Lino-Neto T (2004) First report of Hakea sericea leaf infection caused by Pestalotiopsis funerea in Portugal. Plant Pathol 53:535

    Google Scholar 

  • Srinivasan K, Muthumary J (2009) Taxol production from Pestalotiopsis sp an endophytic fungus isolated from Catharanthus roseus. J Ecobiotechnology 1(1):28–31

    Google Scholar 

  • Steyaert RL (1949) Contributions à l’étude monographique de Pestalotia de Not. et Monochaetia Sacc. (Truncatella gen. nov. et Pestalotiopsis gen. nov.). Bull. Jard. Bot. Bruxelles 19:285–354

    Google Scholar 

  • Steyaert RL (1953a) New and old species of Pestalotiopsis. Trans Br Mycol Soc 36:81–89

    Google Scholar 

  • Steyaert RL (1953b) Pestalotiopsis from the Gold Coast and Togoland. Trans Br Mycol Soc 36:235–242

    Google Scholar 

  • Steyaert RL (1955) Pestalotia, Pestalotiopsis et Truncatella. Bull. Jard. Bot. Bruxelles 25:191–199

    Google Scholar 

  • Steyaert RL (1956) A reply and an appeal to Professor Guba. Mycologia 48:767–768

    Google Scholar 

  • Steyaert RL (1961) Type specimens of Spegazzini’s collections in the Pestalotiopsis and related genera (Fungi Imperfecti: Melanconiales). Darwinia (Buenos Aires) 12:157–190

    Google Scholar 

  • Strobel GA, Long DM (1998) Endophytic microbes embody pharmaceutical potential. Am Soc Microbiol News 64:263–268

    Google Scholar 

  • Strobel G, Yang XS, Sears J, Kramer R, Sidhu RS, Hess WM (1996a) Taxol from Pestalotiopsis microspora of Taxus wallachiana. Microbiology 142:435–440

    PubMed  CAS  Google Scholar 

  • Strobel GA, Hess WM, Ford EJ, Siduhu RS, Yang XJ (1996b) Taxol from fungal endophytes and the issue of biodiversity. Indian Microbiol 17:417–423

    CAS  Google Scholar 

  • Strobel G, Li JY, Ford E, Worapong J, Gary IB, Hess WM (2000) Pestalotiopsis jesteri, sp. nov. an endophyte from Fragraea bodenii Wernh, a common plant in the southern highlands of Papua New Guinea. Mycotaxon 76:257–266

    Google Scholar 

  • Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PC, Chau MW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183

    PubMed  CAS  Google Scholar 

  • Sun HJ, Depriest PT, Gargas A, Rossman AY, Friedmann EI (2002) Pestalotiopsis maculans: a dominant parasymbiont in North American lichens. Symbiosis 33:215–226

    Google Scholar 

  • Sutton BC (1961) Coelomycetes. I. Mycol. Pap. 80:1–16

    Google Scholar 

  • Sutton BC (1980) The coelomycetes: fungi imperfecti with pycnidia, acervular and stromata. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Sutton DA (1999) Coelomycetous fungi in human disease. A review: clinical entities, pathogenesis, identification and therapy. Rev Iberoam Mycol 16:171–179

    CAS  Google Scholar 

  • Swofford DL (2002) PAUP* 4.0: phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Tagne A, Mathur SB (2001) First report of chlorotic spot of maize caused by Pestalotiopsis neglecta. Plant Pathol 50:791

    Google Scholar 

  • Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Shetty HS (2005) Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W and A. (Combretaceae). World J Microbiol Biotechnol 21:1535–1540

    Google Scholar 

  • Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS (2007a) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54

    Google Scholar 

  • Tejesvi MV, Nalini MS, Mahesh B, Prakash HS, Kini KR, Shetty HS, Subbiah V (2007b) New hopes from endophytic fungal secondary metabolites. Bol Soc Quím de Méx 1(1):19–26

    Google Scholar 

  • Tejesvi MV, Tamhankar SA, Kini KR, Rao VS, Prakash HS (2009) Phylogenetic analysis of endophytic Pestalotiopsis species from ethnopharmaceutically important medicinal trees. Fungal Divers 38:167–183

    Google Scholar 

  • Thongkantha S, Lumyong S, McKenzie EHC, Hyde KD (2008) Fungal saprobes and pathogens occurring on tissues of Dracaena lourieri and Pandanus spp. in Thailand. Fungal Divers 30:149–169

    Google Scholar 

  • Tokumasu S, Aoiki T (2002) A new approach to studying microfungal succession on decaying pine needles in an oceanic subtropical region in Japan. Fungal Divers 10:167–183

    Google Scholar 

  • Tuset JJ, Hinarejos C, Mira JL (1999) First report of leaf blight on sweet persimmon tree by Pestalotiopsis theae in Spain. Plant Dis 83:1070

    Google Scholar 

  • Ullasa BA, Rawal RD (1989) Occurrence of a new post-harvest disease of mango due to Pestalotiopsis glandicola. Acta Horticulturae (ISHS) 231:540–543

    Google Scholar 

  • Venkatasubbaiah P, Grand LF, Dyke CGV (1991) A new species of Pestalotiopsis on Oenothera. Mycologia 83(4):511–513

    Google Scholar 

  • Vitale A, Polizzi G (2005) Occurrence of Pestalotiopsis uvicola causing leaf spots and stem blight on bay laurel (Laurus nobilis) in Sicily. Plant Dis 89(12):1362

    Google Scholar 

  • Von Arx JA (1974) The genera of fungi sporulating in pure culture. In: Cramer J (ed) The genera of fungi sporulating in pure culture. A. R.Gantner Veriag Kommanditgesellschaft, Vaduz

    Google Scholar 

  • Watanabe K, Doi Y, Kobayashi T (1998) Conidiomatal development of Pestalotiopsis guepinii and P. neglecta on leaves of Gardenia jasminoides. Mycoscience 39:71–75

    Google Scholar 

  • Watanabe K, Parbery DG, Kobayashi T, Doi Y (2000) Conidial adhesion and germination of Pestalotiopsis neglecta. Mycol Res 104(8):962–968

    Google Scholar 

  • Watanabe K, Motohashi K, Ono Y (2010) Description of Pestalotiopsis pallidotheae: a new species from Japan. Mycoscience 51:182–188

    Google Scholar 

  • Wei JG, Xu T (2004) Pestalotiopsis kunmingensis, sp. nov., an endophyte from Podocarpus macrophyllus. Fungal Divers 15:247–254

    Google Scholar 

  • Wei JG, Xu T, Guo LD, Pan XH (2005) Endophytic Pestalotiopsis species from southern China. Mycosystema 24:481–493

    Google Scholar 

  • Wei JG, Xu T, Guo LD, Liu AR, Zhang Y, Pan XH (2007) Endophytic Pestalotiopsis species associated with plants of Podocarpaceae, Theaceae and Taxaceae in southern China. Fungal Divers 24:55–74

    CAS  Google Scholar 

  • Womersley JS (1995) Handbooks of the flora of Papua New Guinea. Melbourne University Press, Melbourne

    Google Scholar 

  • Worapong J, Inthararaungsom S, Stroble GA, Hess WM (2003) A new record of Pestalotiopsis theae, existing as an endophyte on Cinnamomum iners in Thailand. Mycotaxon 88:365–372

    Google Scholar 

  • Wright ER, Rivera MC, Flynn MJ (1998) First report of Pestalotiopsis guepinii and Glomerella cingulata on blueberry in Buenos Aires (Argentina). Boletín 28:219–220

    Google Scholar 

  • Wu CG, Tseng HY, Chen ZC (1982) Fungi inhabiting on Schoenoplectus triqueter (L.) Palla (I). Taiwania 27:35–38

    Google Scholar 

  • Wulandari NF, To-anun C, Hyde KD, Duong LM, de Gruyter J, Meffert JP, Groenewald JZ, Crous PW (2009) Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia. Fungal Divers 34:23–39

    Google Scholar 

  • Xu L, Kusakari S, Hosomi A, Toyoda H, Ouchi A (1999) Postharvest disease of grape caused by Pestalotiopsis species. Ann Phytopathol Soc Jpn 65:305–311

    Google Scholar 

  • Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers 44(1):15–31

    Google Scholar 

  • Yanna, Ho WH, Hyde KD (2002) Fungal succession on fronds of Phoenix hanceana in Hong Kong. Fungal Divers 10:185–211

    Google Scholar 

  • Yasuda F, Kobayashi T, Watanabe H, Izawa H (2003) Addition of Pestalotiopsis spp. to leaf spot pathogens of Japanese persimmon. J Gen Plant Pathol 69:29–32

    Google Scholar 

  • Zhang YL, Ge HM, Li F, Song YC, Tan RX (2008) New phytotoxic metabolites from Pestalotiopsis sp. HC02, a fungus residing in chondracris rosee gut. Chem Biodivers 5(11):2402–2407

    PubMed  CAS  Google Scholar 

  • Zhu PL (1989) Study on identification and taxonomy of Pestalotiopsis spp. from common ornamental plants. Ms. Thesis. Zhejiang Agricultural University, China

  • Zhu P, Ge Q, Xu T (1991) The perfect stage of Pestalosphaeria from China. Mycotaxon 40:129–140

    Google Scholar 

Download references

Acknowledgments

This project was supported by the Global Research Network for Fungal Biology, King Saud University and the Key Lab of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences. Sajeewa Maharachchikumbura thanks the Key Lab of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing and the Mushroom Research Foundation, Chiang Mai, Thailand, for a postgraduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang-Dong Guo or Kevin D. Hyde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maharachchikumbura, S.S.N., Guo, LD., Chukeatirote, E. et al. Pestalotiopsis—morphology, phylogeny, biochemistry and diversity. Fungal Diversity 50, 167–187 (2011). https://doi.org/10.1007/s13225-011-0125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-011-0125-x

Keywords

Navigation