Skip to main content

Advertisement

Log in

Multi-gene phylogeny of the Halosphaeriaceae: its ordinal status, relationships between genera and morphological character evolution

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

The halosphaeriaceous fungi constitute the largest group of marine Ascomycota found predominantly in marine environments, with few transitional species found in freshwater and brackish water habitats. It has been one of the most intensively studied groups of marine fungi, with 126 species in 53 genera. The classification of the halosphaeriaceous fungi is contentious with one school maintaining that they should be regarded as a family in the Microascales, while others continue to retain the order Halosphaeriales. To refine the phylogenetic inter-relationships among the halosphaeriaceous fungi, 36 taxa were sequenced and analysed based on three loci [nuclear small and large subunit (SSU, LSU), the second largest RNA polymerase II subunit (RPB2)]. The halosphaeriaceous fungi constitute a monophyletic group and share a common ancestor with the Microascaceae however, they share few morphological characters. In the Halosphaeriaceae the centrum tissue comprises catenophyses; asci are clavate to fusiform; ascospores are hyaline, unicellular to many septate, usually with appendages, and most are saprobic in aquatic habitats. Whereas, the peridium of the Microascaceae is carbonaceous, frequently bearing hyphal appendages or setae; asci are globose or ovoid; ascospores are reniform, often bear ornamenting ridges or wings. Genera in the Microascaceae are mainly saprobic from soil to rotting vegetation and occasionally found as pathogens, and primarily terrestrial. Based on morphological data the halosphaeriaceous taxa might be considered as a group warranting ordinal status (Halosphaeriales) and this issue is discussed in this study. Sequence data also show clearly that the genera Remispora and Ceriosporopsis are polyphyletic and we propose the erection of three new genera to accommodate C. tubulifera (Toriella), R. crispa (Kochiella) and R. galerita (Tubakiella). Bovicornua intricata is referred to the genus Ceriosporopsis. The molecular data indicate that different phylogenies based on DNA sequences support a hypothesis that ascospore appendage developments e.g. unfurling bipolar appendages, have evolved and been lost several times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott SP, Singler L, Currah RS (1998) Microascus brevicaulis sp. nov., the teleomorph of Scopulariopsis brevicaulis, supports placement of Scopulariopsis with the Microascaceae. Mycologia 90:297–302

    Article  Google Scholar 

  • Abdel-Wahab MA, Jones EBG, Vrijmoed LLP (1999) Halosarpheia kandeliae sp. nov. on intertidal bark of the mangrove tree Kandelia candel in Hong Kong. Mycol Res 103:1500–1504

    Article  Google Scholar 

  • Abdel-Wahab MA, El-Sharouney HM, Jones EBG (2001a) Two new intertidal lignicolous Swampomyces species from Red Sea Mangroves in Egypt. Fungal Divers 8:35–40

    Google Scholar 

  • Abdel-Wahab MA, Pang KL, El-Sharouney HM, Jones EBG (2001b) Halosarpheia unicellularis sp. nov. (Halosphaeriales, Ascomycota) based on morphological and molecular evidence. Mycoscience 42:255–260

    Article  Google Scholar 

  • Abdel-Wahab MA, Nagahama T, Abdel-Aziz FA (2009) Two new Corollospora species and one new anamorph based on morphological and molecular data. Mycoscience 50:147–155

    Article  CAS  Google Scholar 

  • Alias SA, Jones EBG (2009) Marine fungi from mangroves of Malaysia. Monograph No. 8, Institute of Ocean and Earth Sciences, Malaysia

  • Alias SA, Moss ST, Jones EBG (2001) Cucullosporella mangrovei, ultrastructure of ascospores and their appendages. Mycoscience 42:405–411

    Article  Google Scholar 

  • Anderson JL, Chen W, Shearer CA (2001) Phylogeny of Halosarpheia based on 18S rDNA. Mycologia 93:897–906

    Article  CAS  Google Scholar 

  • Baker TA, Jones EBG, Moss ST (2001) Ultrastructure of ascus and ascospore appendages of the mangrove fungus Halosarpheia ratnagiriensis (Halosphaeriales, Ascomycota). Can J Bot 79:1–11

    Article  Google Scholar 

  • Barghoorn ES, Linder DH (1944) Marine fungi: their taxonomy and biology. Farlowia 1:395–467

    Google Scholar 

  • Barr ME (2001) Ascomycota. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The mycota VII part a systematics and evolution. Springer-Verlag, Berlin Heidelberg, pp 161–177

    Google Scholar 

  • Binder M, Hibbett DS, Wang Z, Farnham WF (2006) Evolutionary relationships of Mycaureola dilseae (Agaricales), a basidiomycetes pathogen of a subtidal Rhodophyte. Am J Bot 93:547–556

    Article  Google Scholar 

  • Bunyard BA, Nicholson MS, Royse DJ (1994) A systematic assessment of Morchella using RFLP analysis of the 28S ribosomal RNA gene. Mycologia 86:762–772

    Article  CAS  Google Scholar 

  • Cai L, Ji KF, Hyde KD (2006) Variation between freshwater and terrestrial fungal communities on decaying bamboo culms. Anton Leeuw Int J G 89:293–301

    Article  Google Scholar 

  • Cain RF (1972) Evolution of the fungi. Mycologia 64:1–14

    Article  Google Scholar 

  • Campbell J (1999) Molecular phylogeny of the Halosphaeriaceae, Ascomycota. University of Portsmouth, UK, Ph.D. Dissertation

  • Campbell J, Anderson JL, Shearer CA (2003) Systematics of Halosarpheia based on morphological and molecular data. Mycologia 95:530–552

    Article  CAS  PubMed  Google Scholar 

  • Campbell J, Volkmann-Kohlmeyer B, Gräfenhan T, Spatafora JW, Kohlmeyer J (2005) A reevaluation of Lulworthiales: relationships based on 18S and 28S rDNA. Mycol Res 109:556–568

    Article  CAS  PubMed  Google Scholar 

  • Cavaliere AR, Johnson TW (1966) Marine ascomycetes: ascocarp morphology and its application to taxonomy and evaluation. Nova Hedw 10:453–461

    Google Scholar 

  • Chen W, Shearer CA, Crane JL (1999) Phylogeny of Ophioceras spp. based on morphological and molecular data. Mycologia 91:84–94

    Article  CAS  Google Scholar 

  • Choi YW, Hyde KD, Ho WH (1999) Single spore isolation of fungi. Fungal Divers 3:29–38

    Google Scholar 

  • de Bary A (1887) Comparative morphology and biology of the fungi, mycetozoa and bacteria. Clarendon, Oxford, pp 1–525

    Google Scholar 

  • Demoulin V (1974) The origin of ascomycetes and basidiomycetes. The case for a red algal ancestry. Bot Rev 40:315–345

    Article  Google Scholar 

  • Demoulin V (1985) The red algal-higher fungi phylogenetic link: the last ten years. BioSystems 18:347–356

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Eriksson OE (1984) Outline of the ascomycetes. Systema Ascomycetum 3:1–72

    Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Farrant CA, Jones EBG (1986) Haligena salina: a new marine pyrenomycete. Bot J Linn Soc 93:405–411

    Article  Google Scholar 

  • Fazzani K, Jones EBG (1977) Spore release and dispersal in marine and brackish water fungi. Material Org 12:235–248

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Hall T (2007) BioEdit 7.0.9.0. Department of Microbiology, North Carolina State University. (http://www.mbio.ncsu.edu/BioEdit/bioedit.html)

  • Hibbett DS, Binder M, Bischoff JF et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Höhnk W (1955) Studien zur Brack-und Seewassermykologie. V. Höhere Pilze des sub-mersen Holzes. Veroeff Inst Meeresforsch Bremerhaven 3:199–227

    Google Scholar 

  • Hsieh S-Y, Chang HS, Jones EBG, Read SJ, Moss ST (1995) Halosarpheia aquadulcis sp. nov., a new lignicolous, freshwater ascomycete from Taiwan. Mycol Res 99:49–53

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 (http://morphbank.ebc.uu.se/mrbayes/download.php)

    Google Scholar 

  • Hyde KD (1990) A new marine ascomycete from Brunei Aniptodera longispora sp. nov. from intertidal mangrove wood. Bot Mar 33:335–338

    Article  Google Scholar 

  • Hyde KD (1992) Tropical Australian freshwater fungi IV. Halosarpheia aquatica sp. nov., Garethjonesia lacunosispora gen. et sp. nov. and Ophioceras dolichostomum (Ascomycetes). Aust Syst Bot 5:407–414

    Google Scholar 

  • Hyde KD, Jones EBG (1989) Observations on ascospore morphology in marine fungi and their attachment to surface. Bot Mar 32:205–218

    Article  Google Scholar 

  • Hyde KD, Goh TK (2003) Adaptations for dispersal in filamentous freshwater fungi. Fungal Divers Res Ser 10:231–258

    Google Scholar 

  • Hyde KD, Jones EBG, Moss ST (1986) How do fungal spores attach to surfaces? In: Barry S, Houghton DR, Llewellyn GC, O’Rear CE (eds) Biodeterioration 6. CAB International Mycological Institute and the Biodeterioration Society, London, pp 584–589

    Google Scholar 

  • Hyde KD, Greenwood R, Jones EBG (1993) Spore attachment in marine fungi. Mycol Res 97:7–14

    Article  Google Scholar 

  • Hyde KD, Wong SW, Jones EBG (1998) Diluviocola capensis gen. and sp. nov., a freshwater ascomycete with unique polar caps on the ascospores. Fungal Divers 1:133–146

    Google Scholar 

  • Hyde KD, Fröhlich J, Taylor JE (2000) Genera of ascomycetes from palms. Fungal Divers Res Ser 2:1–247

    Google Scholar 

  • Ingold CT (1975) An illustrated guide to aquatic and water-borne Hyphomycetes (Fungi Imperfecti) with notes on their biology. Scientific, England

    Google Scholar 

  • Johnson RG, Jones EBG, Moss ST (1984) Taxonomic studies of the Halosphaeriaceae: Remispora Linder, Marinospora Cavaliere and Carbosphaerella Schmidt. Bot Mar 27:557–566

    Article  Google Scholar 

  • Johnson RG, Jones EBG, Moss ST (1987) Taxonomic studies of the Halosphaeriaceae: Ceriosporopsis, Haligena and Appendichordella gen. nov. Can J Bot 65:931–942

    Article  Google Scholar 

  • Jones EBG (1962) Haligena spartinae sp. nov. A pyrenomycete on Spartina townsendii. Trans Br Mycol Soc 45:246–248

    Article  Google Scholar 

  • Jones EBG (1964) Nautosphaeria cristaminuta gen. et sp. nov., a marine pyrenomycete on submerged wood. Trans Br Mycol Soc 47:97–101

    Article  Google Scholar 

  • Jones EBG (1994) Fungal adhesion. Mycol Res 98:961–981

    Article  Google Scholar 

  • Jones EBG (1995) Ultrastructure and taxonomy of the aquatic ascomycetous order Halosphaeriales. Can J Bot 73(Suppl 1):S790–S801

    Article  Google Scholar 

  • Jones EBG (2006) Form and function of fungal spore appendages. Mycoscience 47:167–183

    Article  CAS  Google Scholar 

  • Jones EBG, Choeyklin R (2008) Ecology of marine and freshwater basidiomycetes. In: Boddy L, Frankland JC, van West P (eds) Ecology of Saprotrophic Basidiomycetes, British Mycological Society Symposia Series. Elsevier, London, pp 301–324

    Google Scholar 

  • Jones EBG, Hyde KD (1992) Taxonomic studies on Savoryella Jones et Eaton (Ascomycotina). Bot Mar 35:83–91

    Article  Google Scholar 

  • Jones EBG, Moss ST (1978) Ascospore appendages of marine ascomycetes: an evaluation of appendages as taxonomic criteria. Mar Biol 49:11–26

    Article  Google Scholar 

  • Jones EBG, Moss ST (1980) Further observations on the taxonomy of Halosphaeriaceae. Bot Mar 23:483–500

    Google Scholar 

  • Jones EBG, Moss ST (1987) Key and notes on genera of the Halosphaeriaceae examined at the ultrastructural level. Systema Ascomycetum 6:179–200

    Google Scholar 

  • Jones EBG, Johnson RG, Moss ST (1983a) Ocostaspora apilongissima gen. et sp. nov. A new marine pyrenomycete from wood. Bot Mar 26:353–360

    Article  Google Scholar 

  • Jones EBG, Johnson RG, Moss ST (1983b) Taxonomic studies of the Halosphaeriaceae: Corollospora Werdermann. Bot J Linn Soc 87:193–212

    Article  Google Scholar 

  • Jones EBG, Johnson RG, Moss ST (1984) Taxonomic studies of the Halosphaeriaceae: Halosphaeria Linder. Bot Mar 27:129–143

    Article  Google Scholar 

  • Jones EBG, Johnson RG, Moss ST (1986) Taxonomic studies of the Halosphaeriaceae philosophy and rationale for the selection of characters in the delineation of genera. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, UK, pp 211–230

    Google Scholar 

  • Jones EBG, Chatmala I, Pang KL (2006) Two new genera isolated from marine habitats in Thailand: Pseudolignincola and Thalespora (Halosphaeriales, Ascomycota). Nova Hedw 83:219–232

    Article  Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–203

    Google Scholar 

  • Kirk PW (1976) Cytochemistry of marine fungal spores. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Science, London, pp 177–193

    Google Scholar 

  • Kirk PW (1986) Evolutionary trends within the Halosphaeriaceae. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, UK, pp 263–274

    Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and Bisby’s dictionary of the fungi, 9th edn. CABI, London

    Google Scholar 

  • Koch J (1989) Remispora spinibarbata sp. nov., a marine lignicolous ascomycete from Denmark. Nord J Bot 8:517–520

    Article  Google Scholar 

  • Koch J, Pang KL, Jones EBG (2007) Rostrupiella danica gen. et sp. nov., a Lulworthia-like marine lignicolous species from Denmark and the USA. Bot Mar 50:1–8

    Article  CAS  Google Scholar 

  • Kohlmeyer J (1960) Wood-inhabiting marine fungi from the Pacific Northwest and California. Nova Hedw 2:293–343

    Google Scholar 

  • Kohlmeyer J (1962) Halophile Pilze von den Ufern Frankreichs. Nova Hedw 4:389–420

    Google Scholar 

  • Kohlmeyer J (1972) A revision of Halosphaeriaceae. Can J Bot 50:1951–1963

    Article  Google Scholar 

  • Kohlmeyer J (1975) New clues to the possible origin of Ascomycetes. BioScience 25:86–93

    Article  Google Scholar 

  • Kohlmeyer J (1981) Marine fungi from Martinique. Can J Bot 59:1314–1321

    Article  Google Scholar 

  • Kohlmeyer J (1986) Taxonomic studies of the marine Ascomycotina. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, UK, pp 199–210

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1977) Bermuda marine fungi. Trans Br Mycol Soc 68:207–219

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. The higher fungi. Academic, New York

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1998) Naufragella a new genus in the Halosphaeriaceae. Systema Ascomycetum 16:9–16

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2002) Fungi on Juncus and Spartina: New marine species of Anthostomella, with a list of marine fungi known from Spartina. Mycol Res 106:365–374

    Article  Google Scholar 

  • Kohlmeyer J, Spatafora J, Volkmann-Kohlmeyer B (2000) Lulworthiales, a new order of marine Ascomycota. Mycologia 92:453–458

    Article  Google Scholar 

  • Kong RYC, Chan JYC, Mitchell JI, Vrijmoed LLP, Jones EBG (2000) Relationships of Halosarpheia, Lignincola and Nais inferred from partial 18S rDNA. Mycol Res 104:336–343

    Article  Google Scholar 

  • Landvik S (1996) Neolecta, a fruit-body-producing genus of the basal ascomycetes, as shown by SSU and LSU rDNA sequences. Mycol Res 100:199–202

    Article  CAS  Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    CAS  PubMed  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  Google Scholar 

  • Manimohan P, Jones EBG, Moss ST (1993a) Ultrastructural studies of ascospores of some Remispora species. Can J Bot 71:385–392

    Google Scholar 

  • Manimohan P, Moss ST, Jones EBG (1993b) Ultrastructure of the ascospore wall and appendages of Remispora galerita. Mycol Res 97:1190–1192

    Article  Google Scholar 

  • McKeown TA, Moss ST, Jones EBG (1996) Ultrastructure of ascospores of Tunicatispora australiensis. Mycol Res 100:1247–1255

    Article  Google Scholar 

  • Meyers SP (1957) Taxonomy of marine pyrenomycetes. Mycologia 49:475–528

    Article  Google Scholar 

  • Moss ST (1979) Commensalism in the Trichomycetes. In: Batra LP (ed) Insect-fungus symbiosis. Allanheld, Osmum & Co. Montclair, New Jersey, pp 175–222

    Google Scholar 

  • Moss ST, Jones EBG (1977) Ascospore appendages of marine Ascomycetes: Halosphaeria mediosetigera. Trans Br Mycol Soc 69:313–315

    Article  Google Scholar 

  • Mouzouras R, Jones EBG (1985) Monodictys pelagica, the anamorph of Nereiospora cristata (Halosphaeriaceae). Can J Bot 63:2444–2447

    Article  Google Scholar 

  • Müller E, von Arx JA (1962) Die Gattungen der didymosporen Pyrenomyceten. Beiträge. Kryptogamenflora Schweiz 11:1–922

    Google Scholar 

  • Nag Raj TR (1993) Coelomycetous anamorphs with appendages-bearing conidia. Mycologue, Waterloo

    Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • O’Donnell K, Cigelnik E, Weber NS, Trappe JM (1997) Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. Mycologia 89:48–65

    Article  Google Scholar 

  • Pang KL (2001) Molecular systematics and phylogenetic biogeography of the Halosphaeriales (Ascomycota), City University of Hong Kong, Hong Kong SAR, Ph.D. Dissertation

  • Pang KL (2002) Systematics of the Halosphaeriales: which morphological characters are important? In: Hyde KD (ed) Fungi in marine environments. Fungal Diversity Press, Hong Kong, pp 35–57

    Google Scholar 

  • Pang KL, Jones EBG (2004) Reclassifications in Halosarpheia and related genera with unfurling ascospore appendages. Nova Hedw 78:269–271

    Article  Google Scholar 

  • Pang KL, Vrijmoed LLP, Kong RYC, Jones EBG (2003) Lignincola and Nais, polyphyletic genera of the Halosphaeriales (Ascomycota). Mycol Prog 2:29–39

    Article  Google Scholar 

  • Pang KL, Jones EBG, Vrijmoed LLP, Vikineswary S (2004a) Okeanomyces, a new genus to accommodate Halosphaeria cucullata (Halosphaeriales, Ascomycota). Bot J Linn Soc 146:223–229

    Article  Google Scholar 

  • Pang KL, Jones EBG, Vrijmoed LLP (2004b) Two new marine fungi from China and Singapore, with the description of a new genus, Sablecola. Can J Bot 82:485–490

    Article  Google Scholar 

  • Pang KL, Chiang MWL, Vrijmoed LLP (2008a) Havispora longyearbyenensis gen. et sp. nov., an arctic marine fungus from Svalbard, Norway. Mycologia 100:291–295

    Article  PubMed  Google Scholar 

  • Pang KL, Jones EBG, Vrijmoed LLP (2008b) Autecology of Antennospora (Ascomycota, Fungi) and its phylogeny. Raffles Bull Zool 19:1–10

    Google Scholar 

  • Pang KL, Chiang MWL, Vrijmoed LLP (2009) Remispora spitsbergenensis sp. nov., a marine lignicolous ascomycete from Svalbard, Norway. Mycologia 101:531–534

    Article  PubMed  Google Scholar 

  • Porter D (1982) The appendaged ascospores of Trichomaris invadens (Halosphaeriaceae), a marine ascomycetous parasite of the tanner crab, Chinocetes bairdi. Mycologia 74:363–375

    Article  Google Scholar 

  • Sachs J (1874) Lehrbuch der Botanik, 4th edn. Engelmann, Leipzig

    Google Scholar 

  • Sakayaroj J (2005) Phylogenetic relationships of marine Ascomycota. Prince of Songkla University, Thailand, Ph.D. Dissertation

  • Sakayaroj J, Jones EBG, Chatmala I, Phongpaichit S (2004) Thai marine fungi. In: Jones EBG, Tantichareon M, Hyde KD (eds) Thai fungal diversity. BIOTEC, Thailand, pp 107–117

    Google Scholar 

  • Sakayaroj J, Pang KL, Phongpaichit S, Jones EBG (2005a) A phylogenetic study of the genus Haligena (Halosphaeriales, Ascomycota). Mycologia 97:804–811

    Article  CAS  PubMed  Google Scholar 

  • Sakayaroj J, Pang KL, Jones EBG, Vrijmoed LLP, Abdel-Wahab MA (2005b) A systematic reassessment of marine ascomycetes Swampomyces and Torpedospora. Bot Mar 48:395–406

    Article  Google Scholar 

  • Samuels GL, Blackwell M (2001) Pyrenomycetes-fungi with perithecia. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The mycota VII part a systematics and evolution. Springer-Verlag, Berlin, pp 221–255

    Google Scholar 

  • Schoch CL, Sung G-H, Volkmann-Kohlmeyer B, Kohlmeyer J, Spatafora JW (2007) Marine fungal lineages in the Hypocreomycetidae. Mycol Res 110:257–263

    Article  CAS  Google Scholar 

  • Shearer CA (1989) Aniptodera (Halosphaeriaceae) from wood in freshwater habitats. Mycologia 81:139–146

    Article  Google Scholar 

  • Shearer CA (1993) The freshwater Ascomycetes. Nova Hedw 56:1–33

    Google Scholar 

  • Shearer CA, Crane JL (1977) Fungi of the Chesapeake Bay and its tributaries. VI. Trichocladium achrasporum, the imperfect state of Halosphaeriopsis mediosetigera. Mycologia 69:1218–1223

    Article  Google Scholar 

  • Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580

    Article  Google Scholar 

  • Suetrong S, Sakayaroj J, Phongpaichit S, Jones EBG (2009a) Morphological and molecular characteristics of a poorly known marine ascomycete Manglicola guatemalensis (Jahnulales, Pezizomycetideae, Dothideomycetes Incertae sedis) A new lineage of marine ascomycetes. Mycologia 102:83–92

    Article  Google Scholar 

  • Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG (2009b) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP: Phylogenetic Analysis Using Parsimony, version 4.0b10. Sinauer Associates, Sunderland, Massachusetts

  • Tang AMC, Jeewon R, Hyde KD (2007) Phylogenetic utility of protein (RPB2, β-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of Sordariomycetes (Ascomycota, Fungi). Anton Leeuw Int J G 91:327–349

    Article  CAS  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JS, White TJ (eds) PCR Protocol: A guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wong SW, Hyde KD, Jones EBG (1998a) Annulatascaceae, a new ascomycete family from the tropics. Systema Ascomycetum 16:17–25

    Google Scholar 

  • Wong SW, Hyde KD, Jones EBG (1998b) Ascospore ultrastructure of Halosarpheia heteroguttulata sp. nov. from tropical streams. Can J Bot 76:1857–1862

    Article  Google Scholar 

  • Yusoff M, Koch J, Jones EBG, Moss ST (1993) Ultrastructure observations in a marine lignicolous ascomycete Bovicornua intricata gen. et sp. nov. Can J Bot 71:346–352

    Article  Google Scholar 

  • Yusoff M, Jones EBG, Moss ST (1994) A taxonomic reappraisal of the genus Ceriosporopsis based on ultrastructure. Can J Bot 72:1550–1559

    Article  Google Scholar 

  • Zhang N, Castlebury LA, Miller AN, Huhndorf S, Schoch CL, Seifert K, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung S-H (2006) Sordariomycetes systematics: an overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98:1076–1087

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the TRF/BIOTEC Special Program for Biodiversity Research and Training Grants BRT R_245002, R_251006 and R_351004. JS would like to thank Graduate School-Prince of Songkla University, BIOTEC LGS scholarship for partial financial support. We acknowledge Dr. Kanyawim Kirtikara, Dr. Lily Eurwilaichitr and Dr. Souwalak Phongpaichit for continued support. JS thanks Prof. Lilian L.P. Vrijmoed for providing cultures and laboratory facilites; Ms. Satinee Suetrong, Mr. Anupong Klaysuban and Ms. Sita Preedanon for field and the molecular work assistance. We are grateful to Dr. Jorgen Koch for his contribution in supplying the cultures for this study. KLP would like to thank National Science Council of Taiwan (Project No. NSC 98-2621-B-019-002-MY3) and Center of Excellence for Marine Bioenvironment and Biotechnology (CMBB), National Taiwan Ocean University. We thank an anonymous reviewer for his valued comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jariya Sakayaroj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakayaroj, J., Pang, KL. & Jones, E.B.G. Multi-gene phylogeny of the Halosphaeriaceae: its ordinal status, relationships between genera and morphological character evolution. Fungal Diversity 46, 87–109 (2011). https://doi.org/10.1007/s13225-010-0072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-010-0072-y

Keywords

Navigation