Skip to main content
Log in

Impact of long-term starvation on adhesion to and biofilm formation on stainless steel 316 L and gold surfaces of Salmonella enterica serovar Typhimurium

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effect of 3-year starvation in seawater microcosms on adhesion to and biofilm formation of two Salmonella enterica serovar Typhimurium strains on model stainless steel 316 L and gold surfaces. The bacteria were characterized in terms of morphological alteration, electrophoretic mobility, and affinity to various solvent interfaces. Scanning electron micrographs showed the appearance of coccoid and elongated cells after starvation. All stressed cells were characterized by a hyperflagellation, a significant increase in the global surface charge, and a conservation of their hydrophilic character. Epifluorescence microscopy highlighted an increase in the levels of adhered cells to stainless steel and gold surfaces after starvation stress. Confocal laser scanning microscopy produced evidence of variability between the three-dimensional biofilm architectures of the control and stressed cells on gold compared to stainless steel. The results obtained so far led us to hypothesize that the pervasiveness of nutrient deficiency in natural environments may generate new adaptation strategies for long-term starved Salmonella Typhimurium and probably create protection against other types of stress. The stress adaptation mechanisms identified in this study may induce a genetic instability and change virulence state of starved bacteria. This fundamental study provides information which may aid in the development of sanitation programs for effective pathogen removal in the food industry or from medical devices. The task is certainly complex given that several concomitant physicochemical parameters affect the adhesion to and biofilm formation on model surfaces of stressed bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bakhrouf BFA, Jeddi M, Bouddabous A, Gauthier MJ (1990) Production of filterable minicells by Salmonella paratyphi B in seawater. Microbios Lett 43:123–129

    Google Scholar 

  • Bellon-Fontaine M-N, Rault J, Van Oss CJ (1996) Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid–base properties of microbial cells. Colloids Surf B 7:47–53

    Article  CAS  Google Scholar 

  • Ben Abdallah F, Chaieb K, Snoussi M, Bakhrouf A, Gaddour K (2007a) Phenotypic variations and molecular identification of Salmonella enterica serovar Typhimurium cells under starvation in seawater. Curr Microbiol 55:485–49

    Article  CAS  PubMed  Google Scholar 

  • Ben Abdallah F, Lagha R, Bakhrouf A (2007b) Resuscitation and morphological alterations of Salmonella bovismorbificans cells under starvation in soil. World J Microbiol Biotechnol 126:794–800

    Google Scholar 

  • Bhatti AR, DeVoe IW, Ingram JM (1976) Cell division in Pseudomonas aeruginosa: participation of alkaline phosphatase. J Bacteriol 126:400–409

    PubMed Central  CAS  PubMed  Google Scholar 

  • Briandet R, Leriche V, Carpentier B, Bellon-Fontaine MN (1999) Effects of the growth procedure on the surface hydrophobicity of Listeria monocytogenes cells and their adhesion to stainless steel. J Food Prot 62:994–998

    CAS  PubMed  Google Scholar 

  • Burton P, Holland IB (1983) Two pathways of division inhibition in UV irradiated E. coli. Mol Gen Genet 190:128–132

    Article  CAS  PubMed  Google Scholar 

  • Busscher HJ, van Der Mei HC (2012) How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog 8:e1002440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Byrne B, Swanson MS (1998) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66:3029–3034

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carey CM, Kostrzynska M, Thompson S (2009) Escherichia coli O157:H7 stress and virulence gene expression on romaine lettuce using comparative real-time PCR. J Microbiol Methods 77:235–242

    Article  CAS  PubMed  Google Scholar 

  • Carpentier B, Cerf O (1993) Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol 75:499–511

    Article  CAS  PubMed  Google Scholar 

  • Cooper S (1991) Bacterial Growth and Division: Biochemistry and Regulation of the Division Cycle of Prokaryotes and Eukaryotes. Academic, San Diego

    Google Scholar 

  • Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellafi A, Denden I, Ben Abdallah F, Souissi I, Bakhrouf A (2009) Survival and adhesion ability of Shigella spp. strains after their incubation in seawater microcosms. World J Microbiol Biotechnol 25:1161–1168

    Article  Google Scholar 

  • Espinosa-Urgel M, Salido A, Ramos JL (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182:2363–2369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fletcher M (1994) Bacterial biofilms and biofouling. Curr Opin Biotechnol 5:302–306

    Article  CAS  PubMed  Google Scholar 

  • Foster JW, Spector M (1995) How Salmonella survives against the odds. Annu Rev Microbiol 49:145–174

    Article  CAS  PubMed  Google Scholar 

  • Francolini I, Donelli G (2010) Prevention and control of biofilm-based medicaldevice- related infections. FEMS Immunol Med Microbiol 59:227–238

    CAS  PubMed  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328

    CAS  PubMed  Google Scholar 

  • Giaouris E, Chapot-Chartier MP, Briandet R (2009) Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. Int J Food Microbiol 131:2–9

    Article  CAS  PubMed  Google Scholar 

  • Goller CC, Romeo T (2008) Environmental influences on biofilm development. Curr Top Microbiol Immunol 322:37–66

    CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious disease. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Harry E, Monahan L, Thompson L (2006) Bacterial cell division: the mechanism and its precison. Int Rev Cytol 253:27–94

    Article  CAS  PubMed  Google Scholar 

  • Hartmann FA, Callan RJ, McGuirk SM, West SE (1996) Control of an outbreak of salmonellosis caused by drug-resistant Salmonella anatum in horses at a veterinary hospital and measures to prevent future infections. J Am Vet Med Assoc 209:629–631

    CAS  PubMed  Google Scholar 

  • Hird DW, Pappaioanou M, Smith BP (1984) Case control study of risk factors associated with isolation of Salmonella saintpaul in hospitalized horses. Am J Epidemiol 120:852–864

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Chai TJ (1996) Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable nonculturable cells. Appl Environ Microbiol 62:1300–1305

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Mol Biol Rev 73:310–347

    Article  CAS  Google Scholar 

  • Karunakaran E, Mukherjee J, Ramalingam B, Biggs CA (2011) “Biofilmology”: a multidisciplinary review of the study of microbial biofilms. Appl Microbiol Biotechnol 90:1869–1881

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Fogler HS (1999) The effects of exopolymers on cell morphology and culturability of Leuconostoc mesenteroides during starvation. Appl Microbiol Biotechnol 52:839–844

    Article  CAS  PubMed  Google Scholar 

  • Kjelleberg S, Hermansson M (1984) Starvation-induced effects on bacterial surface characteristics. Appl Environ Microbiol 48:497–503

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lagha R, Ellafi A, Ben Abdallah F, Saidi N, Bakhrouf A (2012) Alteration of outer membrane proteins, secreted proteins and virulence gene expression of Salmonella enterica serovar Typhimurium in response to long-term starvation. Afr J Microbiol Res 6:6182–6188

    Article  CAS  Google Scholar 

  • Lianou A, Koutsoumanis KP (2012) Strain variability of the biofilm-forming ability of Salmonella enterica under various environmental conditions. Inter J Food Microbiol 160:171–178

    Article  CAS  Google Scholar 

  • Merritt K, An YH (2000) Factors influencing bacterial adhesion. In: An YH, Friedman RJ (eds) Handbook of bacterial adhesion: principles, methods, and applications. Humana, Totowa, pp 53–72

    Chapter  Google Scholar 

  • Mrabet B, Mejbri A, Mahouche S, Gam-Derouich S, Turmine M, Mechouet M, Lang P, Bakala H, Ladjimi M, Bakhrouf A, Tougaard S, Chehimi MM (2011) Controlled adhesion of Salmonella Typhimurium to poly(oligoethylene glycol methacrylate) grafts. Surf Interface Anal 43:1436–1443

    Article  CAS  Google Scholar 

  • Mrabet B, Nguyen MN, Majbri A, Mahouche S, Turmine M, Bakhrouf A, Chehimi MM (2009) Anti-fouling poly (2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities. Surf Sci 603:2422–2429

    Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (1994) Structure et fonction des parties de la cellule bactérienne. In: Physiologie de la cellule bactérienne: une approche moléculaire. Masson, Paris, pp 28–56

  • Nelson DR, Sadlowski Y, Eguchi M, Kjelleberg S (1997) The starvation-stress response of Vibrio (Listonella) anguillarum. Microbiology 143:2305–2312

    Article  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  • Pichereau V, Hartke A, Auffray Y (2000) Starvation and osmotic stress induced multiresistances influence of extracellular compounds. Int J Food Microbiol 5:19–25

    Article  Google Scholar 

  • Poortinga AT, Bos R, Norde W, Busscher HJ (2002) Electric double layer interactions in bacterial adhesion to surfaces. Surf Sci Rep 47:1–32

    Article  CAS  Google Scholar 

  • Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB (1995) The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion. Colloids Surf B 4:191–197

    Article  CAS  Google Scholar 

  • Rolinson GN (1980) Effect of beta-lactam antibiotics on bacterial cell growth rate. J Gen Microbiol 120:317–323

    CAS  PubMed  Google Scholar 

  • Rothfield L, Justice S, Garcia-Lara J (1999) Bacterial cell division. Annu Rev Genet 33:423–448

    Article  CAS  PubMed  Google Scholar 

  • Rozen Y, Belkin S (2001) Survival of enteric bacteria in seawater (2001). FEMS Microbiol Rev 25:513–529

    Article  CAS  PubMed  Google Scholar 

  • Sanders SQ, Frank JF, Arnold JW (2008) Temperature and nutrient effects on Campylobacter jejuni attachment on multispecies biofilms on stainless steel. J Food Prot 71:271–278

    PubMed  Google Scholar 

  • Sanin SL, Sanin FD, Bryers JD (2003) Effect of starvation on the adhesive, properties of xenobiotic degrading bacteria. Process Biochem 38:909–914

    Article  CAS  Google Scholar 

  • Schott HC, Ewart SL, Walker RD, Dwyer RM, Dietrich S, Eberhart SW, Kusey J, Stick JA, Derksen FJ (2001) An outbreak of salmonellosis among horses at a veterinary teaching hospital. J Am Vet Med Assoc 218:1151–1159

    Article  Google Scholar 

  • Shin S, Park C (1995) Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soutourina OA, Krin E, Laurent-Winter C, Hommais F, Danchin A, Bertin PN (2002) Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein. Microbiology 148:1543–1551

    CAS  PubMed  Google Scholar 

  • Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ (2012) Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int 45:502–531

    Article  CAS  Google Scholar 

  • Steinberger RE, Allen AR, Hansa HG, Holden PA (2002) Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa-unsaturates biofilms. Microb Ecol 43:416–423

    Article  CAS  PubMed  Google Scholar 

  • Stepanović S, Cirković I, Ranin L, Svabić-Vlahović M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38:428–432

    Article  PubMed  Google Scholar 

  • Tillotson K, Savage CJ, Salman MD, Gentry-Weeks CR, Rice D, Fedorka-Cray PJ, Hendrickson DA, Jones RL, Nelson W, Traub-Dargatz JL (1997) Outbreak of Salmonella infantis infection in a large animal veterinary teaching hospital. J Am Vet Med Assoc 211:1554–1557

    CAS  PubMed  Google Scholar 

  • Umbreit WW (1976) Essentials of bacterial physiology. Dowden, Hutchinson, & Ross, Stroudsburg

  • van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897

    PubMed Central  PubMed  Google Scholar 

  • van Schie PM, Fletcher M (1999) Adhesion of biodegradative anaerobic bacteria to solid surfaces. Appl Environ Microbiol l65:5082–5088

    Google Scholar 

  • Visvalingam J, Holley RA (2013) Adherence of cold-adapted Escherichia coli O157:H7 to stainless steel and glass Surfaces. Food Control 30:575–579

    Article  CAS  Google Scholar 

  • Wong GCL, O’Toole GA (2011) All together now: Integrating biofilm research across disciplines. MRS Bull 36:339–342

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoon MY, Lee KM, Park Y, Yoon SS (2011) Contribution of cell elongation to the biofilm formation of pseudomonas aeruginosa during anaerobic. PLOS ONE 6:e16105. doi:10.1371/journal.pone.0016105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the MIMA2 platform (INRA, Massy, France, http://voxel.jouy.inra.fr/mima2) for allowing us to use the scanning electron microscope and the confocal laser scanning microscope. R.L. is indebted to the Agence Universitaire de la Francophonie (AUF) for the provision of a PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rihab Lagha or Mohamed M. Chehimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagha, R., Bellon-Fontaine, MN., Renault, M. et al. Impact of long-term starvation on adhesion to and biofilm formation on stainless steel 316 L and gold surfaces of Salmonella enterica serovar Typhimurium. Ann Microbiol 65, 399–409 (2015). https://doi.org/10.1007/s13213-014-0872-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0872-5

Keywords

Navigation